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considered. Both analytical and numerical approaches were employed. A fundamental conclusion reached is
that relatively large aerodynamic force changes can be obtained with relatively small rates of gas injection.

Analytical work concentrated on providing, for a simple flow field with gas injection, solutions from
which the results of changes in parameters could be ascertained and which would provide example test cases for
the numerical codes. The case considered is one for which the shear layer, which lies between the shock layer
and the blown gas layer, has a thickness of the same order of magnitude as the other layers. Similarity solutions
for a specific form of distributed gas injection were derived and used to provide pressure distributions; changes
in force due to blowing and the dependence of these forces on various parameters were illustrated. Special
methods necessary to compute the shear layer solutions were developed. An indication of the effects to be
expected due to chemical reactions was found by consideration of oxygen dissociation with chemical
equilibrium.

In the numerical studies, two different codes were developed. In the first, an inviscid flow field was
considered, and problems associated with a crisp reproduction of the shock wave in hypersonic flow and the
accurate representation of the desired blowing velocity at the body surface were considered. In the absence of
experimental data, the code was validated by comparing results with available analytical results. It is valid for
those cases where the boundary layer is blown off and is very thin compared to the shock layer and blown gas
layer. A Navier-Stokes code was also developed. Solutions for a boundary layer on a flat plate and for a non-
separated flow in a compression corner compared well with those found by others. Solutions attempted for a
parameter set for which analytical results are known were unstable; i.e. a shear layer instability resulted. There
is a possibility that this is a physical instability. Consideration of a very hot blown gas allowed stable solutions
to be found, but they did not show a satisfactory comparison with corresponding analytical results; a
fundamental difference between the flows is that the flow field found numerically shows a slightly detached
shock wave, whereas it is assumed to be attached in the analytical study. Some computations for flow fields
with strip blowing were carried out.

The second study has been motivated by the concept of surface-launched rather than space-launched
kinetic-energy weapons for intercepting ICBM's during their ascent trajectory. Because this requires final
interceptor velocities that are several times circular-orbit velocity, takeoff to payload mass ratios must be very
large when using conventional rocket engines. Thus minimization of overall interceptor mass ratio is a natural
goal in trajectory optimization. The high centrifugal acceleration associated with supercircular speeds means that
sizeable down forces, corresponding to many g's of acceleration, are required to maintain the desired intercept
trajectory. A key result of the research has been the determination of the important gains associated with the use
of aerodynamic forces versus propulsive forces for achieving the required down force.

Specific contributions of the research include: a good understanding of the basic form of the optimum
trajectories including the midcourse aeroassisted phase; the nature of the optimal stage design; the effect of target
parameters, time of flight, number of stages, specific impulse of rocket engines and trajectory constraints on the
optimum launch mass; effective tools for implementing reliably and efficiently the numerical optimizations;
development of fast, efficient methods for numerical integration of the trajectory equations; approximate
analytical characterizations of the separate phases of the optimal trajectories; development of a new scheme for
overcoming the poor conditioning of the optimization problem by (indirectly) parameterizing the angle of attack
through specification of the flight path angle. In addition, a simple method of attitude control for a final
spinning guided stage has been developed, based on thrust modulation of a single side-thrusting control jet.
This simple control scheme produces minimum-time attitude control maneuvers and realizes the required
complex feedback control law by a simple on-board computer implementation.

Details of analyses from both studies are contained in published papers, copies of which are contained
in Appendix A of this report.

Suggestions for further work include:
I) Aerodynamic Control Using Gas Injection Into the Boundary Layer

I Inclusion of equilibrium chemistry (dissociation and reaction) in the Navier-Stokes code. The stability
of the shear layer is sensitive to the temperature distribution in this layer, which is affected by chemical




2)

3)

4)

5)

6)

7)

reactions which may occur. Frozen and equilibrium flow calculations allow these effects to be
bracketed.

Improvement of numerical code efficiency so as to handle separated flows economically, in terms of
computer time. This will involve implementation of implicit time-marching or multi-grid relaxation, or
both.

Definitive study of strip blowing, including both analytical and numerical studies, and including cases
of simple and multiple strips.

Study of shear-layer stability in hypersonic flows, both analytically and numerically. Little previous
work has been done on this problem, which must be understood before extensive practical use can be
made of the injection of gases in the boundary layer for aerodynamic control.

Numerical study of temporal effects associated with stopping and starting blowing. Steady state
examples give satisfactory results. Any problems associated with the unsteady processes when starting
or stopping the blowing bear upon the feasibility of using surface blowing for control purposes,
especially if a rotating vehicle with a control which is on only during part of the rotation is considered.
This study will involve extending the temporal accuracy of the codes.

Study of effects of increasing altitude, to a point where free molecule flow exists; calcuation of jet
forces needed for vacuum conditions (no boundary layer). It is not possible to cover the whole range
from continuum to vacuum conditions computationally.

Consideration of three-dimensional, axially symmetric body in hypersonic flow at an angle of attack.

[I) Combined Atmospheric and Exo—étmospheric Attitude and Trajectory Control

1)

2)

3)

4)

5)
6)

Extension of the research on attitude control out of the atmosphere to integrate it with the research on
generation of aerodynamic forces at hypersonic speeds using boundary-layer injection (Part I).

Extension of the time-optimal control laws developed for a spinning missile with an on-off thruster to
the continuously-thrusting case, where hot gas is switched back and forth from one nozzle to another.
This single control scheme has the advantage that it can be utilized both for attitude control in the
atmosphere, using boundary-layer injection, and for control out of the atmosphere.

Modification of the thrust-switching scheme to provide high-resolution attitude cuitrol by means of
pulse-width modulation of the control-jet switch.

Implementation of closed-loop control with high sample rates by storing only one-bit switch position
data in the multivariable function table for the time-optimal control law, based on the desired attitude
and current measurements of missile attitude and attitude rate. The multivariable function scheme for
storing control-jet switch times, as developed in the research to date, uses on-line table lookup with
linear interpolation to determine thruster turn-on and turnoff times. The proposed new scheme offers
possible advantages over the table-lookup scheme. It is potentially simpler from a hardware point of
view and achieves direct closed loop control rather than partially open loup control.

Develop minimum-fuel thruster control laws.

Extend the parametric studies of trajectory optimization with the support of the simplified trajectory
optimization program developed during the last six months. This research would be used to provide
performance requirements for the attitude control schemes described above.
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FINAL REPORT

I. Introduction

This final report covers work supported by Contract No. DASG60-88-C-0037 for a two
year period beginning on April 15, 1988. A two-month no-cost extension was granted so that
the writing of this report would not conflict with end of the academic year duties.

Aside from the faculty members listed as principal or co-investigators, five graduate
students working on their PhD degrees, one post-doctoral fellow, and one undergraduate
student worked on this project. One of the graduate students has completed his work and has
graduated, two are well along in their research and should be finished within a year, and two are
in the initial phases of their research.

The research work to be described here actually began with a 13 month SDIO contract
monitored by AFOSR (No. F49620-86-C-0138; September 15, 1986 to October 14, 1987).
Due to a unique option clause which was not noticed by the original contract monitor, the
original contract lapsed during the period when the management of this and other contracts was
being transferred from AFOSR to the Army Strategic Defense Command: a new contract, the
present one, was submitted and awarded. The net effect was a six-month hiatus in research
support, although some graduate student work continued.

Two different but related studies were supported by this contract and thus are discussed
in this report. The first involves the use of gas injection from the surface of a hypervelocity
vehicle such that the effective shape of the body is changed so as to obtain desired aerodynamic
forces, and thus desired vehicle control. The second has to do with the attainment of optimal




trajectories for trans-atmospheric vehicles to achieve minimum vehicle mass and minimum
transit time, or minimum energy expenditure for a given transit time. Both thrust and
aerodynamic control were considered in the second study. The application of either study is to
any hypervelocity vehicle which spends at least part of its time in the atmosphere, including
ground based kinetic energy weapons. The type of aerodynamic control analyzed in the first
study allows for consideration of a gas injection scheme which might possibly be used both
within and outside of the atmosphere.

The type of aerodynamic control analyzed in the first study allows for consideration of a
gas injection scheme which might possibly be used both within and outside of the atmosphere.
That is, one could imagine a conical vehicle with four regions of gas injection, each extending
from nose to base over a 20° to 30° circumferential arc, with each region centered about lines
900 apart. In addition, valving would allow changing the gas flow to four jets with equal
circumferential spacing near the nose and four more near the vehicle base. In the atmosphere,
control is attained through changing the displacement thickness of the boundary layer
asymmetrically by blowing. Outside the atmosphere, control is maintained through the jet thrust
applied asymmetrically. Mass flow requirements will probably be different in the two limiting
cases. Preliminary indications are that strip blowing, rather than the distributed blowing just
described, may provide a more flexible and efficient control system in the atmosphere; in that
case, the valving needed to change to jets will be quite simple. In any event, the fundamental
idea of control by gas injection would be the same for flight in and outside of the atmosphere
and the general mechanical devices required would be the same. It should be noted that such a
control system would then be useful both for earth-launched vehicles which either remain in the
atmosphere or go into space, and for space-launched vehicles which either remain in space or
enter the atmosphere.

An important consideration for any control system is its scaleability. In order to address
this problem, using the best available information from the studies made so far, an estimate of
the mass rate of flow of injected gas has been made for a vehicle of 500 gms mass and volume
of 500 cc, configured as a 10° cone traveling at a Mach number of 25 at 200,000 ft. The
injected gas is taken to be helium. Currently solutions are available only for a two-dimensional
wedge, not a cone. Even if it is assumed that gas is injected over a 20° arc on the cone, there
may be significant 3-D effects. Nevertheless, the solutions obtained for the wedge should be
representative of what would be found for flow over a cone. Calculations indicate that in order
to achieve a 2-g transverse acceleration, a gas flow rate of roughly 0.6 gms/sec is required.
Thus, even if it were necessary to maintain 2-g's over two to three minutes, only 70 to 110 gms
of helium would be required. (Less hydrogen would be needed; here helium was chosen so that
no chemical reactions need be considered.) Although this result gives only the required mass of




injected gas, with no account taken of the necessary gas generator and valving weights, the
estimate appears low enough to give good indication that the control system can be scaled down
for quite small vehicles.

It appears, then, that a control system employing gas injection is scaleable and has the
possibility of being used for both endo- and exo-atmospheric vehicles. Further study would
seem warranted. In particular, the behavior of the injected gas as altitude increases and vacuum
conditions are approached requires analysis, as does the effect of unsteadiness. Finally, three-
dimensional flow fields will have to be considered.

Quarterly progress reports [1 - 7] have been submitted, as required. Publications and
conference papers resulting from this work are referred to in the following text and reproduced
in Appendix A.




II. Review of Work Accomplished

Part 1. Study of gas injection into the boundary layer on a wedge at
hypersonic velocities

1. Introduction

The first effect of gas injection at a low rate from the surface of a body in a flow field is
a thickening of the boundary layer (weak blowing). As the mass flux of injected gas increases,
the boundary layer eventually is blown off the wall, so that a three layer flow structure is
obtained (strong blowing). The blown-gas layer is adjacent to the wall; above this are first the
shear layer and then the shock layer, which is immediately downstream of the shock wave. In
Figure 1 (from Reference 8) are shown sketches illustrating both weak and strong blowing, the
speckled regions corresponding to the boundary layer and shear layer, and weak and strong
interactions, in flow over a thin wedge. Here, the term weak interaction refers to the fact that
solutions for the boundary layer (weak blowing), or the shear and blown-gas layers (strong
blowing) may be found independently of the solutions in the shock layer; solutions from the
shock layer merely provide boundary conditions. When the interaction is strong, on the other
hand, solutions in the shock layer and inner layers must be found simultaneously; they affect
each other strongly. Weak interaction occurs when the thickness of the inner layers (boundary
layer in weak blowing, and shear plus blown-gas layer in strong blowing) is small compared to
the thickness of the wedge, and strong interaction when the thickness of the inner layers is large
compared to the wedge thickness. In order to quantify these ideas, X; is defined as the distance
from the vertex of the wedge to the point where the boundary layer is of the same thickness as
the wedge. The thickness of the boundary layer increases more slowly than does that of the
wedge, so that for X/X, >> 1 (X is the distance from the wedge vertex) the interaction is weak
and for X/Xr << 1 it is strong. When the blowing becomes strong and the boundary layer is
blown off the wedge, the cases considered are those where the thickness of the shear layer is at
most of the same order of magnitude as the thickness of the blown-gas layer, so that the
definition of X; may still be used to order weak and strong interactions. It may be noted that as
x = X/Xr — 0, separate layers cannot be defined and the entire region of disturbed flow near the
leading edge is referred to as a merged layer. In Figure 1, this region is shown to occur for x =
0(ae4) where o is the semi-vertex angle of the wedge; since the wedge is thin, a << 1.

In the event the blowing is weak and the boundary layer remains attached, the
distributions of velocity and temperature are those typical of boundary layers. When the
blowing is strong, the distributions of pressure P, temperature T, flow velocity u, and relative
mass concentration of blown gas Yy, are sketched in Figure 2, again from Reference 8. Of




particular importance is the large spike in temperature caused by the transfer of ordered to
thermal energy as the flow is decelerated in the shear layer.

The fundamental goal of the work described here was to ascertain the viability of
boundary layer blowing as an aerodynamic control. The first point at issue was the magnitude
of the mass flux of injected gas for realistic forces. To that end, it was decided early to consider
strong blowing first so that the largest possible forces would be achieved, and to assess the
corresponding mass rate of flow of blown gas. Next, the distribution of pressure forces was
clearly an important point and so it was clear that both distributed and strip blowing cases had to
be analyzed. Third, because injected gases other than air are of considerable importance in
terms of both cooling efficiency and force obtained per unit mass flux of blown gas, and since
the effects of dissocistion and chemical reaction had to be assessed, it was decided that at least a
simple gas mixture and chemical equilibrium had to be included. These points will be discussed
in varying detail in what follows.

One important point which has not been addressed is the effect of turbulence. It is
common practice to employ the Reynolds averaged equations of motion with some closure
model for the turbulent eddy viscosity, in solving flow problems involving turbulent boundary
layers. These models consist of the use of an algebraic equation in the simplest case to two
partial differential equations in complex cases. It is known that as Mach number and altitude
increase, transition to turbulent flow occurs at higher and higher Reynolds numbers and thus
becomes less and less of a problem. In Figure 3 (Reference 9) are shown experimental, flight
and wind tunnel data giving the transition Reynolds number as a function of the Mach number
and the mean Reynolds number per foot. Superimposed on this plot are curves showing the
actual Reynolds number for a body that is ten feet long, at various altitudes, and at the indicated
Mach numbers. It is seen that above 25,000 feet, a very low altitude, the actual Reynolds
number is considerably less than the transition Reynolds number, so the flow is laminar.
Hence, in all that follows, laminar fiow is considered. It should be noted that the method of
blowing, e.g., using a finite number of holes rather than a completely distributed injection over
a surface, could cause local areas of turbulent flow. This level of detail was not considered in
the present study.

Because this was in large measure a feasibility study, the - implest possible geometry for
a body in hypervelocity flow was employed. Thus, a thin wedge in a two-dimensional
hypersonic flow field was chosen, with gas being injected from one side wall. Since the
pressure which occurs with inviscid flow is easily calculated, the force difference induced by
blowing was found by consideration of only the flow field over the side with blowing. Two
methods of analysis were used, one essentially analytical in nature and the other numerical. The
analytical studies, confined to very simple sub-problems in the main, provided much needed




information on the scaling of various regions, to be used in setting up numerical algorithms, as
well as solutions which gave insight to the problem and examples to which numerical solutions
could be compared as checks of the algorithms. Because there are few if any experimental
results available for comparison, these checks are very important. The numerical analysis
provides two codes. In the first, which holds for inviscid flows, a number of flow fields can be
studied as long as the boundary layer has been blown off the body and conditions are such that
the shear layer is thin compared to the other two layers; with the inviscid flow code, such
studies can be made relatively easily and inexpensively. The other code is a full Navier-Stokes
code. When strip blowing, or blowing which does not start at the vertex, is considered, for
example, this code must be used because the existence of separated flow and recirculating
regions means that viscous terms are required.

In the following, the analytical and numerical studies are discussed separately, for
convenience, although the work was carried out in one cooperative effort. It may be noted that
the first task carried out in the original contract was a literature search. In Appendix B is given a
list of relevant references which may be useful to others working in this field. In particular,
some references are presented from thirty years ago, when there was considerable interest in
hypersonic flow and some flows with blowing were considered.

2. Analytical Approach

As noted above, a major goal of this study has been to estimate the size of the
aerodynamic forces available as a result of surface blowing. The force changes are caused by
the distortion of the flow field that results from gas injection, and so a detailed study of the flow
is required for a calculation of the modified pressure distributions. We wished to have at least
one analytical formulation which would provide insight into the manner in which various
parameters of the problem will affect the resulting aerodynamic forces, as well as a means of
validating computer codes developed to handle more complicated cases. Moreover, in such an
analytical formulation most of the parameters can be absorbed through rescaling of the
variables, so that the solutions depend on a relatively small number of dimensionless
parameters. The simplest example appears to be two-dimensional flow past a wedge with a
continuous distribution of blowing velocity in a power-law form, such that the problem requires
study of ordinary rather than partial differential equations. Later of course one would wish to
consider more complicated geometries with more general blowing distributions.

For sufficiently strong blowing the boundary layer is blown away from the surface as a
free shear layer. If the blowing rate is large enough (but still for low subsonic values of the
injection velocity), for fixed values of the other parameters, the shear layer will be very thin




relative to the total displacement of the outer flow, and may be neglected in a first
approximation. The pressure force causes the injected gas to move downstream, still at a speed
much lower than the speed of the undisturbed flow. The displacement effect is then caused
entirely by the layer of blown gas and is described by the inviscid-flow approximation of Cole
and Aroesty [10]. Our first calculations focused on application of this theory to determine force
changes resulting from various blowing distributions with various chemically inert injectants.

In hypersonic flow, however, viscous layers are hoiter and therefore substantially
thicker than at lower speeds. It was thus anticipated that significant flight regimes exist where
the viscous shear layer may not be neglected, and an extension of viscous-interaction theory to
include strong blowing was derived. As explained earlier, sufficiently far downstream from
the leading edge the interaction remains weak, since flow disturbances caused by the blown gas
and the shear layer are small. At points closer to the leading edge, however, the shear-layer
thickness is as large as, or larger than, the wedge thickness and the interaction with the external
flow is strong. The analytical ideas are discussed in a paper [11] (Appendix A) which has been
accepted for publication in the Journal of Fluid Mechanics. The shear layer has been assumed
laminar, since, as already discussed, for typical values of Mach number and Reynolds number
transition to turbulence is not expected to occur on the wedge. The temperature of the blown
gas is considered to be much lower than the high temperature in the shear layer.

In the limiting cases considered, solutions can be obtained for the thin layer of blown
gas adjacent to the surface, for the thin viscous shear layer, and for the outer inviscid-flow
region between the shear layer and the shock wave. Certain constants are obtained by suitable
matching conditions, and the end results are surface pressure distributions for both the strong-
and weak-interaction regions. The introduction of an interpolation formula then provides an
approximate description of the surface pressure over the entire length of the wedge and allows
integration to give a relation between the blowing rate and the change in the pressure force.

A numerical solution was required for the system of equations describing the shear
layer. The desired solutions proved difficult to compute since they exhibit singular behavior at
the lower boundary (closest to the wedge) of the shear layer where the temperature and velocity
are low, a property which was understood only after a substantial amount of numerical
experimentation; once the behavior of neighboring solutions was known, a suitable numerical
procedure could be developed. The two-point boundary-value problem to be solved was one in
which the location of the lower boundary is not known a priori and may only be determined
after it is further specified that the numerical solution must have the proper asymptotic behavior
as the lower boundary is approached (the velocity and temperature must vary as specific powers
of the coordinate). As an additional complication, it was found that the required behavior,
based on the asymptotic solutions that were derived analytically, occurs in an extremely small




neighborhood of the lower boundary, typically between 10 and 10°3 times the size of the
overall computational domain. Numerically this requires an exceptionally high level of
resolution near the lower boundary. Initial attempts at solving the problem using a shooting
method, together with asymptotic solutions and certain invariance properties of the system,
were unsuccessful. A Newton-based finite-difference scheme utilizing continuation, with the
location of the lower boundary treated as the free parameter, was ultimately found to be
successful. A complete description is given in a paper [12] submitted to the Journal of
Computational Physics (Appendix A). In Fig. 4 (similar to Fig. 2 from Ref. 12) typical
computed solutions for the scaled velocity and temperature profiles in the shear layer are shown
and a comparison is made with the asymptotic solutions near the lower boundary. It may be
seen that the agreement between the numerical and analytical solutions is very good, and thus
provides a validation of the numerical computations.

Initially, asymptotic solutions were obtained for the case of air injection at constant wall
density, with air treated as an ideal gas (constant specific heats and no dissociation). The
formulation was then extended to include injection of a chemically inert foreign gas with either
constant wall density or constant wall temperature. Finally, to provide a measure of the extent
to which ideal-gas results are changed, the analysis for the weak-interaction region was repeated
for injected air using equilibrium chemistry, with the effects of variable specific heats and
dissociation of oxygen included (the first deviations from ideal-gas behavior as temperature
increases). Numerical results have been obtained for a range of Mach numbers and altitudes,
for different wedge angles and lengths, for different blowing intensities and surface
temperatures, and for various injected gases. The results are contained in a paper presented at
the AIAA Aerospace Sciences Meeting in Jan. 1990; an extended version [8] (Appendix A)
including a calculation with oxygen dissociation has been submitted for publication in the AIAA
Journal .

In Fig. 5 (Fig. 3 from Ref. 8) the scaled surface pressure distribution (measured relative
to the undisturbed surface pressure) is shown for a wedge with three different values of a scaled
blowing rate. (See Ref. 8 for complete definitions of these quantities.) For each blowing rate,
the asymptotic solutions for the weak and strong interaction regions are indicated by dashed
lines, and the interpolated solution by a solid line. The pressure variation in Fig. 5 results from
strong blowing normal to the wall, with the injected mass flux varying as a particular power of
the coordinate x, a choice made, as pointed out previously, to allow reduction of the partial
differential equations to ordinary differential equations.

Note that, as would be expected, the pressure increases as the blowing rate increases.
Note also that, for a given blowing rate, the surface pressure decreases monotonically in the
streamwise direction, a feature to be expected since a favorable pressure gradient must be




present to drive the injected gas downstream. To achieve a more general pressure distribution,
one wouid probably require injection through discrete strips.

A principal result of the analytical work is shown in Fig. 6 (Fig. 5, Ref. 8), where a
scaled change in force on a wedge of length L with vertex half-angle o is plotted against a
scaled mass-flow rate for various cases, all with constant wall temperature. In general, the
scaled force change depends not only on the scaled blowing rate, but also on the type of
injectant, the ratio of wedge length L to the reference length X (where X gives the approximate
boundary between strong and weak viscous interaction), and the hypersonic similarity
parameter Mo (which equals the component of the free-stream Mach number M_, normal to
the wedge surface, for small o). Three limiting cases are shown for air injection. For
L/X;—0, strong interaction occurs over most of the wedge, and the solution is independent of
M_.a in a first approximation, since the total displacement thickness is large in comparison with
the wedge thickness. For L/X —0, weak interaction occurs over most of the wedge, and for a
fixed scaled blowing rate a larger force change is found for M,a—ee than for M_a—0, as
might be expected since the latter case can be interpreted as describing a wedge thickness which
tends to zero in comparison with the total thickness of the region of disturbed flow. It appears
worthwhile to note that all other cases for air injection will lie in the region of the figure
bounded above and below by the two curves for L/X —oo.

Also shown in Fig. 6 is a comparison between air and helium as injectants, for L/X =1
and M_,=1. As in the inviscid-flow case considered by Cole and Aroesty [10], it is seen that
strong blowing of a gas lighter than air, in this case helium, yields higher surface pressures and
thus larger force changes for a fixed mass flow than would be found when air (or a gas heavier
than air) is used as the injectant. Interestingly, this trend appears to become reversed when the
strength of the blowing decreases. It is found that the high specific heats of light injectants
cause substantial cooling of the viscous layer, thereby reducing its thickness. At quite low
injection rates, where tue viscous layer provides a large fraction of the total displacement
thickness, this can lead to a reduction in force on the wedge. The curves for air and helium
would therefore be expected to cross if they were extended to smaller values of mass flow.
(Curves are not plotted near zero scaled blowing rate since it has been assumed that the blowing
is sufficiently high to cause an inviscid blown layer with thickness at least of the same order as
that of the shear layer; this condition is violated if the blowing rate is taken too small.)

To establish numerical orders of magnitude, dimensional values of the change AF in
force (per unit span) and the total mass-flow rate m of injected gas (per unit span) have been
computed for a range of parameter values and for various injectants, using the properties of the
standard atmosphere. The solutions depend on several parameters, which can be divided
conveniently into three groups. Parameters related to flight regime are M, and altitude z; those




characterizing wedge geometry are o and L; and those representing properties of the injected
mass are m, the wall temperature Ty, the ratio Oy, of the injectant molecular mass to that of air,
and the ratio ¥, of specific heats of the injectant. In Ref. 8 air injection on a wedge having
length 3m and half-angle 6 deg, for Mach number M,,=15 and altitude z=30km, was selected as
a baseline case. For this case it was found that rather large changes in force per unit span, of
the order of 1000N/m (68.51b/ft), are achieved with seemingly moderate injection rates per unit
span, of the order of 0.1kg/m-sec (0.0671bm/ft-sec). The parameters were systematically
varied and a typical result is illustrated in Fig. 7 (Fig. 6a of Ref. 8), where AF is plotted against
m for various flight regimes, with air injection. (Also shown are results from the real-gas
analysis, to be discussed later.) As may be seen, for given injectant rates the force changes
increase with increasing Mach number and decrease with increasing altitude. In Ref. 8 it is
shown that, for a given Mach number and altitude, the force changes increase with wedge angle
and wedge length. Overall trends with changes in the parameters are about as expected.

For the higher injection rates, if a simple isothermal model for the atmosphere is
adopted, and certain relatively small variations are ignored, a rough approximation showing the
primary dependence on parameters is given by (Ref. 8)

AF = const. (M_ 2 e ZH L 2 T, /Oy )13
where H is the atmospheric scale height and the other parameters have already been defined.
This simple expression shows most of the major trends, although not the pr;)per /cllfantitative
-z

values. It is seen that the force change increases with increasing M__ “e , a factor
proportional to the free-stream dynamic pressure. Increasing the ratio T, /), of the injectant
temperature to its molecular mass will cause greater displacement of the outer flow and thus also
increase the force change. The dependence on wedge length L implies that it would be most
efficient to distribute a given amount of blown mass over a large surface area.

At higher temperatures, real-gas effects must also be taken into account. For air, the
specific heats begin to vary when T26u0 K, and O begins to dissociate when T22000-2500 K,
for p=0.01-1 atm. In the real-gas analysis the temperature was assumed low enough that, to a
good approximation, only the dissociation of oxygen occurs. (For pressures of the order of 0.1
atm, this assumption limits the temperature to values below about 4000 K; the limit increases
with increasing pressure.) Air is then composed of Ny, O9, and O. The real-gas analysis leads
to values of the maximum temperature in the shear layer that are lower than the ideal-gas values,
as would be expected. The shear-layer thickness is likewise reduced, but only by a relatively
small amount; for a 6 deg wedge at 30 km altitude with M_=20, there is about a 5% decrease in
shear-layer thickness, and a still smaller fractional change in the excess pressure force. For the
two cases illustrated in Fig. 7, real-gas effects are seen to give only small changes in the force
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change corresponding to a given blowing rate. The differences would of course be greater if
higher Mach numbers and temperatures had been considered.

Currently some of the issues relevant to strip blowing are being considered. Boundary-
layer separation will occur ahead of the point where blowing is first introduced. At supersonic
speeds, the flow near separation can be described by a local interaction of the viscous boundary
layer with the external inviscid flow. In a recent paper [13], this kind of local flow description
has been shown to remain possible at high Mach number, with certain modifications, provided
that the wall is cooled and the wall temperature is well below the stagnation temperature of the
external flow. We have been able to simplify the results of this work, with the intention of
using these results to provide initial conditions for a study of strip blowing at hypersonic
speeds. With this added information, an existing theoretical description of strip blowing at
supersonic speeds [14] can be extended to higher Mach numbers. Work on the separated region
downstream of a strip is in progress with consideration of a simple case where the blowing
velocity at the trailing edge of the strip is small but finite.

As noted elsewhere in this report, numerical solutions have indicated an instability of the
free shear layer that appears to be a genuine physical effect rather than a consequence of the
computational method. Others have also encountered such an instability in numerical
calculations [15]. Following a few investigations of the stability of hypersonic boundary
layers, a recent analytical study considers linear instability at high Mach number for a free shear
layer with a prescribed velocity profile [16]. An analytical study of vortex-sheet instability at
supersonic speeds includes nonlinear effects [17], but neglects shear-layer thickness, and finds
"kink" modes, with a shock wave on one side and an expansion wave on the other side. Much
more needs to be done, to gain a full understanding of the conditions under which instability
should be expected and to consider ways in which instability might be avoided. In particular,
the nonlinear theory should be extended to hypersonic speeds, both for a vortex sheet with zero
thickness and for a shear layer with nonzero thickness.

3. Numerical Approach

The computation of hypersonic flows, in the Mach-number range 8-30, puts before the
computational fluid dynamists a number of problems not encountered for lower Mach numbers.
Most serious is the loss of accuracy of conventional finite-volume methods when capturing
strongly oblique discontinuities. In the initial research period, preceding the period covered by
this final report, an attempt was made to develop a finite-volume code that would be more nearly
isotropic in its treatment of oblique discontinuities. This was to be accomplished by computing
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inviscid fluxes in a frame locally aligned with the most prominent physical feature, for example,
a shock wave.

It turned out that the development of a robust technique of this kind was far less trivial
than expected. To avoid stagnation of the research, this approach was abandoned for the more
standard one of generating a grid more or less aligned with the most important shock and shear
waves, and cluster the grid points near those waves. (The formulation of inviscid fluxes in a
frame rotated with respect to the grid is currently the subject of two thesis projects in the
Department of Aerospace Engineering).

A general strategy adopted in developing the more conventional computational code was
to validate the code as often as possible as greater degrees of complexity were added. For lack
of experimental results, the code was benchmarked against analytically obtained flow solutions.
Two decades ago Cole and Aroesty [10], and Wallace and Kemp [18], and recently Messiter
and Matarrese [8, 11, and in Appendix A] were able to obtain similarity solutions for inviscid
hypersonic flows over flat plates and wedges in the presence of strong surface blowing. These
solutions all involve blowing distributions which are singular at the leading edge and therefore
are harder to match than experimental data, thus putting strong demands on code accuracy and
robustness. ‘

Initially, an Euler code was written and used to reproduce such solutions. The code is
based on a higher-order Godunov-type [19] finite-volume discretization of the inviscid Euler
equations. Higher-order accuracy is obtained by reconstructing interface values of the state
quantities using a monotone interpolation technique suggested by Koren [20], based on Van
Leer’s “kappa” scheme [21] [22]. The interface fluxes are computed using Roe’s upwind-
biased flux-difference splitting technique [23]. Standard characteristic boundary procedures are
applied along the leading edge and top of the computational domain (Fig. 8). Proper treatment
of the wall and exit boundaries proved to be the first real challenge in developing the code.

Wall boundary conditions were initially implemented through a combination of a
characteristic boundary condition and a ghost cell approach. The desired blowing distribution
was achieved by specifying the velocity magnitude, direction and either the density or
temperature in the ghost cells just "below" the wall. The pressure in these cells was then
determined by extrapolating an incremental form of the Riemann invariant to the wall in a
characteristic boundary procedure. The incremental form of the Riemann invariant was, and
still is, used, since the flow may not be locally isentropic near the wall. This method, though
very robust, did not enable precise specification of the mass flux along the wall. The actual
mass flux resulted from the application of Roe's approximate Riemann solver at the cell
interfaces along the wall boundary. It was determined that in order to accurately reproduce the
types of injection distributions used in the analytical solutions, a more exact method of
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specifying the inflow boundary conditions was required. Instead of specifying the flow values
in the ghost cells, the same extrapolating methods are used to specify the flow values at the
boundary itself. From these quantities, the exact inflow fluxes may be derived. This provides a
greater degree of control over the injection distribution, but it also results in a less robust
boundary procedure.

Along the rear portion of the grid where the flow exits the computational domain, both
supersonic and subsonic outflow conditions exist. For the subsonic exit flow region, a
characteristic boundary procedure requires the specification of some flow parameter, such as the
pressure, along the boundary of the grid. Since little is known about the solution a priori, this
is not possible. An order-of-magnitude analysis of the governing equations shows that the
pressure is nearly constant across the blown layer which contains the subscnic region. Initially,
a pressure was extrapolated from the supersonic exit region down to the subsonic region
assuming a zero pressure gradient normal to the wall. This enabled the use of a standard
characteristic boundary procedure. Unfortunately, such a scheme delays, or even prevents,
convergence of the solution.”

A time-dependent non-reflecting characteristic boundary condition developed by
Hedstrom [24] of the form

was considered, but was found to produce a steady state which was dependent upon the initial
conditions. It was noted, however, that by introducing the pressure gradient normal to the wall
as a source term in Hedstrom's condition, it becomes an effective mechanism for enforcing the
proper behavior of the pressure along the exit boundary. This exit boundary condition has the
form

op du dp
= .pa— = -K@u-a) =
ot b ot -2 dy

where K is a constant, typically taken to be between 0.1 and 10. If K is taken too small or too
large, convergence to a steady state is delayed.

Two different time-marching algorithms were considered during the development of the
code. It was first considered to use a block-Gauss/Seidel technique, used by Koren [20]. This
algorithm updates while sweeping through the grid in the coordinate directions, updating all
flow variables in one cell simultaneously. For two-dimensional flow, this requires the
inversion of a local 4 x 4 matrix. This method turned out to be less robust than was anticipated.
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Especially in the initial phases of the calculation, when strong transients are present, severe
under-relaxation was needed to prevent loss of positivity, i.e. temperatures becoming negative,
which considerably reduced the efficiency of the method. In the later stages of convergence,
time-steps corresponding to Courant numbers of the order of 10 could be maintained.

A well-known disadvantage of sweeping algorithms such as Gauss/Seidel, is that they
do not lend themselves very well to vectorization. When CPU time on the Cray machines at the
National Aerodynamic Simulator facility became available, it became desirable to select a
method more compatible with vector processing.

The answer was found in certain multi-stage explicit marching methods concurrently
developed [25] at the Aerospace Engineering Department. These methods, when applied to a
scalar convection equation, achieve optimal damping of high spatial frequencies in the
instantaneous error (the deviation from the steady solution). The more stages the method
includes, the better the short-wave damping becomes; since strong transients usually contain
strong spatial high-frequency components, methods with good short-wave damping are
expected to be robust. The experience in using these methods for the full nonlinear Euler
equations in the hypersonic flow regime indicates that the two-stage method performs as well as
any of the more-stage methods, and is more robust. The reason probably is that using many
stages leads to a larger time-step for the multi-stage method than is warranted by the linear
analysis on which the scheme's coefficients are based.

The two-stage scheme is a simple predictor-corrector method for solving the equation

a—U =L(U)
ot ’

namely,

Un+0 = yn 4 o At L(UD)
Un+1 =UM+ At L(ﬁn+a)

where n indicates the iteration number. The parameter o is adjusted such that the overall
method is most dissipative for the high-frequency part of the spectrum for the spatial
differencing operator L(U). For example, if L(U) is the first-order upwind differencing
operator, the optimal value of a is 1/3, and is associated with a time step At corresponding to a

Courant number of 1/2 (half the maximum allowed by stability for this operator). For the third-
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order spatial differencing scheme adopted in the code, the value of & becomes 0.6612 and the
associated At corresponds to a Courant number of 0.8276.

Proper construcfion of a computational grid proved crucial in obtaining accurate
solutions of flow fields for which analytical solutions exist. Strong blowing distributions
which extend up to the nose of a wedge result in strong, highly curved shocks. Blowing
distributions which are singular at the nose (x=0) require a great deal of refinement at the nose
in order to adequately resolve the singularity. To keep the total number of grid points down to a
manageable level, the grid point spacing increases away from the nose (by about 10% per cell
typically). Representation of a strong curved shock on a grid with uneven spacing in the x and
y direction can result in solution inaccuracies and even non-convergence.

As the shock changes its orientation relative to the grid, its numerical "structure”
changes. For example, if the shock is aligned with the grid in one direction, the shock can be
resolved to within a single cell, whereas when the shock passes through the grid at an oblique
angle, it can be smeared over 4 to 5 cells. The difference between these two representations of
the shock is also manifested in different post shock entropies or densities. This was one of the
main motives behind the early work in calculating interface fluxes in a frame locally aligned with
the shock instead of the grid. Fig. 9 shows a carpet plot of the density for a case in which this
effect is very prominent. Notice that the post shock density varies non-smoothly along the
shock as it changes its orientation to the grid. These density variations are then convected back
into the flow. ,

Rapid variations in the numerical representation of the flow can also lead to non-
convergence of the flow solution. After decreasing several orders of magnitude, the residual
becomes nearly constant in the distorted region, and is convected back with the flow. The exact
mechanisms behind this phenomena are not clear, but the problem can be eliminated by better
alignment of the grid with the flow.

The code was used to calculate solutions for three different comparison cases for which
analytical solutions exist. The cases considered were for an inverse-square-root injection-
velocity distribution along a flat plate in both the strong and weak interaction regions and along
a wedge in the weak interaction region. In each comparison case, good agreement was obtained
between the analytical and numerical solutions. This validation study was developed into a
paper entitled “Euler Computations of Hypersonic Flow with Strong Blowing’ and presented at
the AIAA 28* Aerospace Sciences Meeting in Reno, Nevada (26, and in Appendix A).

With the completion of the inviscid code validation study, viscous terms were added to
the code in order to model the Navier Stokes equations. The discretization of the diffusion
terms is done by second-order-accurate central differencing [27]. This preserves the second-
order spatial accuracy of the entire scheme.
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Validation of the Navier Stokes code began with a calculation of a subsonic boundary
layer on a flat plate. Fig. 10 shows good agreement between the scaled numerical velocity
profiles and a Blasius profile. The code also compared well with numerical solutions generated
at NASA Langley [28] for high Mach number flows in a nonseparated compression corner.
Next, a comparison with an analytical similarity solution derived by Messiter, Matarrese, and
Adamson {8, and in Appendix A] was attempted for flow over a wedge in the strong interaction
limit in which the shear-layer thickness is of the same order as the blown layer thickness. The
case of constant-temperature air injection was chosen, with the temperature of the injected air
equal to that of the free-stream air, and injection velocity specified proportional to x'“. Free-
stream flow parameters were;

Meo=25,

Ree=50,000 ,

Proo=0.72 ,

a=5°.
where a is the wedge half angle. A power-law viscosity-temperature relation p=T*"5, was used
to be consistent with the analytical work. It was found that for this case, the resulting shear
wave was unstable and oscillated back and forth (Fig. 11). The instability can be eliminated by
increasing the temperature, and hence, the viscosity coefficient of the injected gas. Fig. 12
shows a converged case in which the injected air temperature was equal to four times that of the
free-stream air. Unfortunately, such a case compares poorly with the similarity solutions. The
analytical work predicts a wall pressure distribution of the form

P —
PaUZ

2 oL 172 (or-172
— P, (X—R)' (x)

where the ratio of the plate length L to the viscous interaction length X, is equal to 0.0232 and
P, is equal to 0.74476. Fig. 13 shows a comparison between the numerically determined
pressure distribution along the wall and the analytical prediction. The reason for the
discrepancy is not completely clear. The numerical solution predicts that the shock will be
detached from the leading edge of the wedge whereas the analytical solution assumes that it is
attached. Also, as the temperature is increased in the blown layer, viscous effects become more
important yet are assumed negligible in the analytical blown layer.

The exact nature of the instability, namely, whether it is purely physical, or partly
numerical, is not clear at present. There certainly is a physical basis to the unsteady wave-
forms, but it is also clear that truncation error present in the code may influence or even trigger
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the instability. From a physical point of view, it is not clear whether the instability of these
layers is linear, i.e., comparable to the inviscid Helmholtz instability, or nonlinear. Numerical
experiments indicate it can be removed by increasing the physical viscosity. In the inviscid
case, where the instability was also observed [26, and in Appendix Al, it can be removed by
maintaining the proper level of artificial viscosity, namely by downward limiting of the

computational cell size. It is conjectured that numerical “noise”, generated at the leading edge,
where the flow gradients are very large, especially for the singular blowing distributions |

considered, may seed the instability anid cause it to appear as a severe disturbance in flow cases
where it otherwise would become visible much farther downstream. This explanation is due to
Woodward [15], who encountered a similar shear instability in supersonic channel flow. '

The case of constant-density air injection was also considered. The same free-stream
parameters were retained from the previous cases, and the injection parameters were chosen so
that the blown layer and shear layer thicknesses would again be equal. With an injected air
density equal to 25 times free-stream density and an injection velocity specified proportional to
x'?, a stable solution was obtained. Unfortunately the numerical and analytical predictions of
the wall pressure do not agree (Fig. 14). As before, the shock in the numerical solution stands
off ahead of the leading edge of the wedge. Also, for the constant density case, the temperature
distribution of the injected gas varies as x'? (Fig. 15). With such high temperatures near the
leading edge, it is not clear that viscous effects would be negligible everywhere in the blown
layer as assumed in the analytical model. This would indicate that the constant-temperature
injectant case, while not only more physically realistic, should ;Sfovide the best comparfson.

In an attempt to obtain a stable constant-temperature injectant solution which compares
well with the analytical predictions, the code was modified to handle injection of a gas different

from the free-stream gas. This modification required the addition of a species conservation ’

equation to the computational code. Diffusion coefficients are calculated using proportionality
factors which are consistent with the analytical work [8, and in Appendix A]. It was anticipated
that injecting a gas with a lower molecular weight would decrease the Mach number in the
blown gas layer, and help to stabilize the shear layer. In practice, it was found that with the
same free-stream conditions and apparent body shape as in the previous cases, but with helium
injected at free-stream temperature, the shear layer was again unstable. If the temperature o’f the
injected helium is raised to twice that of the free-stream air, the shear layer can be stabilized.
whereas air injection required a blown gas temperature of four times the free-stream temperature
before a stable solution was obtained. This indicates that use of a lighter gas as an injectant not
only provides greater net body force for a given mass flow rate, but may also help to stabilize
the flow. However, the comparison with analytical results, although better, is not considered

satisfactory as yet; again, this may be due to some assumptions made in the derivation of the
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analytical results. More research is required in the area of hypersonic shear layer stability before
the relationship between temperature and molecular weight variation across the layer and the
stability of the layer can be completely understood.

Calculations were also performed involving more practical blowing distributions such as
blowing in discrete strips. Fig. 16 shows Mach number contours tor a case in which helium
was blown from a 10° half angle wedge in two strips from 0.2 < X < 0.4, and 0.6 < X < 0.8
with uniform velocity and temperature along each strip. Free-stream conditions for this case
were

Moo=25 ,

Re=50,000 ,

Proo=0.72 .
Of particular interest in this solution are the two regions of separated flow which result from the
discrete blowing pattern. Fig. 17 shows velocity vectors in the separated flow region created
just ahead of the first blowing strip. The size of this region is not geometrically defined in that
the Jength of this region is dependent upon the blowing strength. In numerically generated 2-D
representations of such flows, we and others [28] have found that the length of the separation
region is also dependent upon grid resolution »f the flow. This makes accurate calculations of
such flows very difficult. Adding to the difficulty of such calculations is the fact that free
separated regions tend to develop very slowly numerically, resulting in high computational
costs. Due to the frequent occurrence of such separated regions in flows with discrete strong
blowing, more research is warranted to find ways to rapidly and accurately resolve free
separated flows. Fig. 18 shows velocity vectors for the recirculation regions which occur
between the two blowing strips. The length of such a region is geometrically defined by the
spacing of the strips, but the effect of grid resolution on the resulting flow pattern is not yet
known.

4. Summary and Conclusions

Based on the work completed to date, it seems clear that it is possible to obtain
significant aerodynamic forces by injecting gas from the surface of a hypersonic vehicle at
relatively low rates of mass flow. For example, if one imagines a 1000 1b vehicle, say
10 feet long with a span of 2 feet at an altitude of 30 km and a Mach number of 15, then a
one-g maneuver would require a force per unit span of 1000/2 = 500 #/ft = 7300 N/m.
From Figure 6¢ of Reference 8 (in Appendix A) it is seen that an injection rate of roughly 0.40
Ibm/sec of hydrogen is required. This injection rate is evidently enough to cause the
boundary layer to leave the surface, thus causing a considerable change in equivalent
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body shape and hence pressure distribution and body force. Thus, this type of aerodynamic
control appears feasible.

The general pressure distribution obtained with distributed injection is, as seen for
example in Fig. 5 is one in which the pressure and thus the body force, decreases along the
body. This must be the case, of course, if the fluid is to flow along the body. Such a force
distribution may not be the one desired for a given maneuver; in that event, a series of strips
from which gas is injected at differing rates is needed. Hence, strip blowing must be
considered as an important part of this study. Moreover, because it may be necessary, for
practical reasons, to begin gas injection somewhat downstream of the foremost point of the
body, the flow field near the nose will be similar to that at the beginning of a strip. In this
event, separated flow regions of varying size will occur at the beginning and the end of the
strip. As mentioned previously, an inability to reproduce numerically a separated flow region in
the same number of iterations as required for the rest of the flowfield is a problem common to
all known codes for supersonic and hypersonic flows; in general, the separated flow regions
require three to ten times the computer time needed when no separation occurs. Because there
are so many separated flow regions when strip blowing is considered it is necessary that more
efficient methods of calculation be found. Some work on this problem has been done during
the latter part of this contract year. More remains to be done and is mentioned later in the
section on suggestions for new work. Analytical work on the strip blowing problem has also
been initiated, is also incomplete, and is mentioned later in suggestions for new work.

The inclusion of the effects of chemistry, through consideration of dissociation of
oxygen in a simple example solved analytically, indicates that the expected decrease in
maximum temperature occurs; that is, some of the thermal energy is used to dissociate the
oxygen molecules. The net effect on the force change is shown to be minimal, in the example
considered. However, this cannot be taken to be a general result as yct. More cases, including
those involving the more complex issues associated with the injection of a reactive gas such as
hydrogen, must be considered. Again, the inclusion into the numerical code of the ability to
handle enough mixture components and the calculation of equilibrium concentrations such that
hydrogen injection may be considered has been begun, but is not completed as of the end of the
contractual period; inclusion of this capability is mentioned in suggestions for future work.

It should be noted that the studies proposed and carried out under this contract are for
steady state flow fields. This is certainly a proper condition to consider for the first step.
However, there are cases for which a control would be actuated intermittently, rather than on a
steady basis. In that event, it is necessary to analyze the unsteady flow field structure and thus
the time dependence of the force distribution, for various start. .nd stopping control
procedures. Such studies are proposed in future work.
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In summary the essential contributions of the research have been the establishment of the
viability of gas injection as a possible aerodynamic control, solutions for several benchmark
example cases, the development of a code valid for conditions under which the flow may be
considered to be inviscid, the development of a Navier-Stokes code for cases where viscous
effects are important, and the initiation of definitive studies of strip blowing and the effects of
chemical reaction, all at hypersonic flow velocities; the body shape considered was a thin
wedge. It should also be mentioned that two graduate students, Michael Matarrese and Nelson
Carter, have been supported through a large part of their advanced graduate work by this
contract, their thesis work being on the analytical and numerical approaches described above.
In approximately one year, they should graduate and be in a position to join the professional
community in gasdynamics.
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Part II. Optimal Aerodynamic and Propulsion Control of Intercept

Trajectories at Supercircular Speeds
1. Introduction

The primary goal of the research in Part II has been to investigate trajectories and basic
design parameters for high-performance, multistage, earth-based interceptors with ranges of
several thousands of miles and flight times of a few minutes. Such interceptors offer a possible
alternative to the space-based interceptors which are currently being considered in the U. S.
Strategic Defense Initiative. While the earth-based interceptors have many obvious advantages,
they impose severe requirements on the propulsion system; both the stage accelerations and ratio
of launch mass to payload mass must be very large. Solid propellent zngines offer the
capability of producing the required accelerations and small guided warheads can contribute
greatly to the reduction of the payload mass. However, even with relatively small payloads, the
high launch mass remains 5 critical concern. This has led us to base our research on the
minimization of the mass ratio with respect to the trajectory and the design parameters. A key
result of the research is the importance of using aerodynamic forces. When they are properly
exploited during the midcourse phase of the trajectory, a sizable reduction in the launch mass is
achieved.

Specific contributions of the research include: a good understanding of the basic form of
the optimum trajectories including the midcourse aeroassisted phase, the nature of the optima]
stage design, the effect of target parameters and trajectory constraints on the optimum launch
mass, effective tools for implementing reliably and efficiently the numerical optimizations,
approximate analytical characterizations of the separate phases of the optimal trajectories, simple
methods for attitude control which may help to minimize the mass of the final guided stage, and
methods for evaluating the targeting capabilities of the final stage. In the remaining paragraphs
of this section, these contributions are reviewed briefly along with some comments on how the
research has evolved. Subsequent sections go into greater detail and make connections with
with material in prior progress reports [1-7] and technical papers [29-37, and in Appendix A]
which have been written under the contract.

Because of their very short flight times and long ranges the ground-based interceptors
require terminal speeds significantly greater than circular orbital speeds. A the onset of the
research activity little was known about the effect of such speeds on the design of the stages and
the ascent and intercept trajectory. It was clear that a down-force would be needed on the final
stage (or stages) to keep the trajectory from escaping to altitudes far above target altitudes.
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Since it does not consume engine fuel, an obvious candidate for generating the down-force was
negative aerodynamic lift. However, little was known about when and where in the trajectory
that such aeroassisted forces should be applied.

Answers to the stage-design and trajectory questions were sought by minimizing the
overall vehicle mass ratio with respect to variables such as: stage size parameters, engine burn
times, coasting times between stages, and the angle-of-attack program. This is a formidable
numerical optimization problem and much of the research activity was devoted to its formulation
and solution. The formulation involved models of: the aerodynamic forces, atmospheric
density, vehicle structure, engine performance, and equations of motion [Section 2] Other
concerns were: approximate finite dimensional parameterizations of the infinite dimensional
control function (angle of attack) [Section 3], fast methods for accurate integration of the
equations of motion (thousands of solutions were needed to compute each optimal
trajectory){Section 4], and the choice of an optimization algorithm [Section 3]. In the
beginning relatively simple optimization problems were solved and most of the effort was put
into the integration algorithms. As problems of greater difficulty were considered the
optimization problems became poorly conditioned, seriously affecting the reliability of the
optimization algorithms. The poor conditioning was overcome by a new scheme for (indirectly)
parameterizing the angle of attack through the flight path angle [Section 3].

As the numerical work proceeded it became possible to generate optimal trajectories for a
wide variety of target conditions. A general pattern emerged [Section 5]. The optimal ascent
trajectories consisted of three phases: a boost phase, in the atmosphere, to an altitude of
approximately 65 km.; an aeroassisted, coasting phase near the 65 km. altitude; an essentially
out-of-the-atmosphere coasting phase where the trajectory rises to intercept the target. The
details of an example optimal solution for a five-stage interceptor are shown in Fig. 19. The
three phase character of the optimal trajectory is evident. The flight time is six minutes; the
range is 3100 miles; the mass ratio is 1,900. Later, more extensive parametric studies were
performed. They show [Section 5] the effect on launch mass of such parameters as the time of
flight, the intercept altitude, the number of stages, the specific impulse of the engines. They
also show that eliminating the aerodynamic lift or imposing certain altitude constraints on the
ascent trajectory can increase significantly the optimal mass ratio.

Based on the results of the general optimization studies it has been possible to develop
simplified models for each of the three trajectory phases. These models give insight into the
form of the optimum trajectories and lead to faster, reasonably accurate, approximate solutions
of the optimization problem. The model for the aeroassisted, mid-course phase assumes that
speed and altitude are connected by a function (called the universal curve) that is determined by
balancing the difference between centrifugal and gravity forces by negative aerodynamic lift at
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the maximum lift-to-drag ratio [Section 6]. On the universal curve all flight motions are defined
by simple formulas. The final ascent phase is essentially Keplerian and for a fixed target it can
be determined by a solution of the Lambert problem. The boost phase is represented by a
simplified modelling of the staging parameters and simple functional representation of the flight
path angle [Section 7].

Another series of investigations explored questions concerning possible maneuvering of
the final stage when it is out of the sensible atmosphere. As has been indicated, it is essential to
reduce as much as possible the mass of the final stage. If attitude control is needed, this places
a premium on the simplicity of the control scheme. An implementation for a spinning stage,
which uses thrust modulation of a single side-thrusting control jet has been developed [Section
8). It produces minimum-time attitude control maneuvers and realizes the required complex
feedback control law by a simple on-board computer implementation. Still another investigation
concerns out-of-the-atmosphere, fuel-optimal interception. Suppose, during the ascent of the
final stage, data on a specified target is transmitted to the stage and it is desired to intercept the
target within a given time and to minimize the mass of the fuel required to achieve the
interception. When the available engine thrust is large, a method for computing the required
thrusting program has been obtained [Section 9]. Finally, suppose the thrusting capability of
the final stage is given and its initial state as it leaves the atmosphere is known. What is the set
of targets that may be intercepted by all possible maneuvers of the final stage? This question
may be answered if the reachable domain of the stage (the set of positions which can be reached
in a given time) is known. Considerable progress in characterizing the reachable domain has
been made, both for intermittent thrusting of high-thrust engines and for continuously thrusting
engines [Section 10].

2. Modelling the Multistage Interceptor

When the launch and target points have been specified, they determine a plane passing
through the center of the earth. Motion out of this plane consumes additional engine fuel.
Thus, to minimize the launch mass it is sufficient to describe the motion of the interceptor in the
plane. Specifically, there is no great loss of accuracy if it is assumed that all stages of the
interceptor are modelled as a point mass moving in a plane which contains the center of a
spherical, non-rotating earth with an inverse-square gravitational field. In dimensionless form
the equations of motion have the form

AR _ ygny 46 _ Veosy
dt Vsiny, dr R
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where: Tis dimensionless time, R is proportional to the distance of the stage from the center of
the earth, 6 is its polar angle, V is proportional to its speed, yis its flight path angle, M is
proportional to its mass, « is its angle of attack, A is a dimensionless thrust, and /sp is the
specific impulse of the engine. The dimensionless lift and drag forces are given in terms of the
dimensionless altitude H = R-1 and V by

L = Larenvic, . D = ZarPanvic,. @)

where 7 is a constant, P is proportional to atmospheric density, and C, and Cp are,
respectively, the lift and drag coefficients. These equations are highly nonlinear and illustrate the
complexity of the dynamics for each stage.

In the early phases of the research a variety of models of varying complexity were
considered for the functions P, C;, and Cp. See the progress reports [1-7] and papers (29, 30,
and in Appendix A]. Smoothness of the functions is vital to the proper functioning of the
minimization algorithms, so table-look-up schemes cause problems. It was learned through
experience that relatively simple models (exponential density and Jorgensen's formulas for lift
and drag) affected little the accuracy of the optimal solutions.

The control variables are the angle of attack a(7) and the engine thrust magnitude A.
The angle of attack generates the ascent program and is a function of time. For solid propellent
engines, the engine is either off or at full thrust. Thus, its time dependence can be represented
by two parameters: a coast time and a burn time. The thrust magnitude for each stage is
determined indirectly by the burn time and fuel mass for the stage. By making some
simplifying assumptions concerning the structural efficiencies of the stages, it is in turn possible
to obtain the initial stage masses and the fuel masses from the initial launch mass of the
interceptor and parameters 0; which denote the ratio of the payload mass to initial mass for each
stage. Finally, the physical dimensions of each stage, which are necessary for computing the
lift L and drag D, are determined from the stage masses and some sizing assumptions. Thus,
the complete trajectory and vehicle design data are determined by the angle-of-attack program
for each stage, the initial launch mass of the entire interceptor, the burn and coast times, and
stage mass ratios 0 . See the quarterly progress reports [1-7] and paper [33, and in Appendix
A] for full details.
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Given the angle-of-attack programs and the indicated data, it is possible by using the
equations of motion to determine the entire trajectory of the interceptor. At launch the initial
conditions of the interceptor are known: R(0) =1 and &0) specify the launch position in the
plane of motion (without loss of generality it is possible to set &0) = 0), X0) = 90 degrees
(vertical launch), V(0) = 0, M(0) = initial launch mass. Thus, the first stage equations of
motion can be integrated to generate the motion of the first stage. After staging, the parameters
of the second stage, including its initial mass, are determined as has been described in the
previous paragraph. The variables R, 6, V, and 7y are continuous across staging. Thus, their
initial values are known at the beginning of second-stage flight and again the equations of
motion may be integrated. Similarly, the entire trajectory is determined.

3. The Optimization Problem and Its Solution

The optimal interception problem is stated in terms of the model of the previous section.
The required data of the problem are: the total flight time of the interceptor from launch to
interception, the target range angle = 6, the target altitude = k¢ and the payload mass. The
optimization objective is to minimize the total launch mass. The free variables in the interception
are: the angle-of-attack programs for each stage, the coasting and burn times for each stage, and
the mass-ratio parameters. Thus, there are equality conditions which must be met (final
conditions on the interceptor altitude, range angle and mass) and a cost function to be minimized
(the launch mass). In addition, there may be constraints on the free variables, such as upper
and lower limits on coast and burn times and the stage mass ratios.

The above optimization problem is actually an optimal control problem with parameters,
where the control function is the angle-of-attack program o(7). Many approaches for solving
such problems (particularly single stage problems) have been discussed in the literature. See,
e.g., the discussion in papers [32, 33, and in Appendix A]. The difficulty in solving optimal
control problems is that the control function belongs to an infinite dimensional space and
computations must take place in a finite dimensional space.

Our initial approach to numerical solutions was to approximate (7) by simple finite-
dimensional representations such as piecewise linear functions [5).- Thus, the optimal control
problem is approximated by an optimization problem with a finite number of parameters (the
original free parameters plus the parameters which determine the representation for a(1)).
While this approach is simple and very flexible and produced good results on certain problems.
it proved to have a fatal shortcoming. It often produced optimization problems which were very
poorly conditioned. For example, small changes in the angle of attack at the beginning of the
flight produced very large changes in the variables at the end of the flight. This sensitivity
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caused the minimization algorithm to fail or have very slow convergence. Thes. ‘ifficulties are
well documented in our earlier progress reports [1-7].

The poor conditioning was eventually overcome by parameterizing a(7) indirectly
through a direct parameterization of the flight path angle ¥(7). In this approach, dy/dt is
computed from the parameterized H(7) and then substituted, together with R, ¥, V and M, into
the third equation of (1). This equation then becomes through sin & and L an implicit equation
in a. The indirect parameterization of « is obtained by solving the implicit equation. Note that
this eliminates the need to integrate the differential equation for dy/d7z. Of course, the remaining
differential equations in (1) must be integrated as usual. When the indirect parameterization is
used, the entire trajectory is under more direct control. Changes in ¥(7) near the beginning of
the trajectory have very little effect on the terminal portions of the trajectory. Thus, the
sensitivity of the terminal constraints to the parameterization is greatly reduced. Another
advantage, perhaps less important, is evident at launch. Here, the differential equation for dy/dr
has a singularity because V = 0. With the y parameterization the differential equation is not
integrated and the normally troublesome singularity is circumvented. Other issues involving the
indirect parameterization such as imposing various smoothness conditions on the angle of attack
and pitch angle are discussed in the progress reports [1-7] and [32, 33, and in Appendix A].

A good deal of effort and experience was involved in setting up the numerical
optimization algorithms which were used to solve the finite dimensional problems resulting
from the y parameterization. The following is a brief review. The basic approach was an
augmented Lagrangian method. This method addressed directly the equality constraints. The
various inequality constraints on the problem parameters were handled indirectly by nonlinear
transformations, a technique which proved to be simple and reliable. The iterative descent
algorithm was of the BFGS type. At each iteration it requires the numerical evaluation of the
errors in meeting the terminal conditions and their partial derivatives with respect 1o all of the
parameters. Because of the highly nonlinear character of the optimization problem it was
necessary to compute these partial derivatives by finite differences. This process introduces
appreciable rounding errors, which at times affected the reliability of the optimization procedure.
Such difficulties were overcome by careful attention to numerical details, e.g., in the integration
of the differential equations at the staging times and in the use of smooth functions to represent
problem nonlinearities. Because of the finite-difference derivatives, each solution of a typical
optimization problem involved over 4000 solutions of the differential equations. The
corresponding computational time was about 2 hours on an Apollo DN 4000. Again, further
details are available in the progress reports [1-7] and [32, 33, and in Appendix A].
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4. Numerical Methods for Integrating Equations of Motion

It has already been pointed out that thousands of individual trajectory solutions are
needed to compute each optimal trajectory solution. For this reason there is a great deal of
leverage on selecting accurate and efficient numerical integration algorithms. Early in the
research program it was demonstrated that a single-pass, fifth-order Adams-Moulton (SPAM-5)
predictor-corrector algorithm provides much better computational performance than the
traditional fourth-order Runge Kutta (RK-4) algorithm [30, and in Appendix A]. Conventional
AM predictor methods consist of two integration passes per overall integration step, a predictor
pass and a corrector pass. In the single-pass version all state-variable derivatives are based on
the predicted values of each state variable. For this reason only one derivative evaluation is
required per integration step. Therefore the method runs approximately twice as fast as
conventional AM-5 integration and four times faster than conventional RK-4 integration. This,
combined with the dependence of dynamic errors on A rather than &4, where A is the integration
step size, accounts for the improved efficiency of SPAM-5 versus RK-4. There is, however, a
startup problem associated with predictor algorithms because of their dependence on past as
well as current state-varianle derivatives. For the SPAM-5 method this problem was solved by
using a special Gear RK-4 startup algorithm [30, and in Appendix A]. It was necessary to use
this startup algorithm whenever staging took place as well as initially when integrating the
trajectory equations.

Another major improvement in trajectory integration efficiency was obtained by using an
analytic formula rather than numerical integration to compute the velocity gained each integration
step due to engine thrusting. Only the much smaller effects of gravity, Coriolis, centrifugal and
gravity accelerations need to be integrated numerically. This also results in a substantial
improvement in computational accuracy.

The overall effects of the improvements in integration methods as described above can
be seen in Fig. 20, which shows the error in burnout position versus dimensionless integration
step size for a typical 4-stage ascent trajectory. The step size for the RK-4 data points in the
figure has been decreased by a factor of four over the step size actually used to take into account
the four passes per RK-4 integration step. Thus the reciprocal of the step sizes shown in the
figure is a true measure of the relative computational speed associated with each method. Plots
1 and 2 in the figure compare the accuracy of RK-4 and SPAM-5 integration when the angle of
attack o is used as the control variable in the optimization program. Clearly the SPAM-S is
roughly an order of magnitude more accurate for a given step size. Conversely, for a given
accuracy, the SPAM-5 runs approximately twice as fast. Plots 3, 4, 5 and 6 compare the
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accuracy of RK-4 and SPAM-5 integration when the flight-path angle ¥is used as the control
variable in the optimization program. Switching from & to ycontrol pre.. !=s an additional
three orders of magnitude of accuracy improvement for the same step size. This is mainly due
to the fact that dy/ds is no longer integrated. The figure also shows that analytic integration of
the thrust term produces an additional accuracy improvement of one to two orders of magnitude
for the same integration step size. In summary, the control and integration methods developed
for use in the trajectory optimization program have increased the speed and hence lowered
computational costs by more than an order of magnitude for a given trajectory accuracy.

5. Results of the Trajectory Optimization Studies

Many optimal intercept problems have been solved using the methods and models
reviewed in the preceding sections. In this section we present some of the results. The angle of
attack is parameterized indirectly through the flight path angle yas described in Section 3. For
each stage the parametric representation of Y(7) is a linear function plus two exponential
functions. The pitch angle is constrained to have a continuous derivative; this guarantees that
the required pitching moment is bounded. A variety of problems have been solved where
coasting of the stages is allowed. In these problems the optimal coasting times are either zero or
so small that they have little effect on the optimal launch mass. For all the problems considered
here the coasting times have been set to zero. The minimum burn time for each stage is 10
seconds and the payload mass is 10 kg. Except for the results in Fig. 24, the specific impulse is
fixed at 300 seconds. Except for the results shown in Fig. 23, there are five stages.

Trajectory details for an example optimal aeroassisted trajectory are shown in Fig. 19.
The problem data are: time of flight = 360 seconds, target range angle = 45 degrees
(approximately 3100 miles), target altitude = 400 km.(approximately 250 miles), payload mass
= 10kg.. The staging times are apparent. With the exception of the fifth stage, the optimal burm
times are at their lower limits of 10 seconds. The resulting vehicle acceleration A/M is quite
high, ranging from about 20 to 70 g's. If the minimum burn time is reduced below 10 seconds,
even higher accelerations are obtained. The aeroassisted midcourse coasting phase begins at
burn out of the final stage and runs from about 53 seconds to 194 seconds. The slight drop in
V is due to the drag loss. There is little loss in speed after the exit from the midcourse phase.
The reason is obvious: the trajectory leaves the atmosphere quickly, so there is little
aerodynamic drag. Close inspection of Y(t) for 0 < 7 < 60 shows its linear-exponential
parameterization. If the smoothness constraint on the pitch angle is removed and a(7) is

allowed to be discontinuous at the staging points, the overall character of the trajectory is




essentially the same and the launch mass is reduced by about 0.5 %. Thus, the smoothness of
the pitch angle does not seem to be a very stringent constraint.

Operational considerations may add further constraints to the interception problem. We
have, for example, considered two constrained versions of the problem in Fig. 15. They differ
only in the assumptions placed on the motion of the final stage after engine burn out; the models
for the earlier stages of the trajectory remain the same. The altitude vs. range angle plots are
shown in Fig. 21. Plot B is the optimal aeroassisted trajectory described in the previous
paragraph. In plot A, the final payload is constrained to move essentially outside the
atmosphere. Thus, after burn out, the trajectory for the final stage is a Keplerian transfer to
target interception. The out-of-the-atmosphere constraint is imposed by requiring the minimum
altitude of the Keplerian segment to exceed a specified altitude (100 km.). In plot C, the
payload is allowed to move through the atmosphere, but it is not aeroassisted, i. ., the angle of
attack is zero and there is no aerodynamic down lift. This avoids any increase in drag and
heating which may result from lift.

Table 1 gives numerical results for the three problems. As expected, the launch mass is
least for the aeroassisted case. For the zero-lift, atmospheric case negative aerodynamic lift is
also exploited, but because of the no-lift constraint on the payload it occurs together with engine
thrust in the final stage. This accounts for the long burn-time of this stage; it allows more time
for the negative aerodynamic lift to act. In the Keplerian case, the altitude constraint leads to a
very large launch mass because it essentially eliminates any effective utilization of negative
aerodynamic lift. The Keplerian solution does have a potential operational advantage. Since the
trajectory is essentially outside the atmosphere, communication with the payload is not blocked
by atmospheric ionization.

Figs. 22 through 24 illustrate the effect of key parameters on optimal launch mass. Each
point on the curves is the result of an optimal solution. Except for the results in Fig. 22 the
trajectories are aeroassisted. Note that the target altitude is 200 km.; this a more demanding
intercept condition than the 400 km. of the preceding problem. Fig. 22 shows the relative
performance of optimal aeroassisted trajectories and optimal trajectories where aerodynamic lift
is not allowed during the coasting of the final stage. The advantage of the aeroassisted
trajectories is greater for shorter intercept times. For both types of trajectories the launch mass
grows very rapidly as the flight time approaches 320 seconds. As explained in the preceding
paragraph, aerodynamic lift is actually used in the midcourse phase. It is just used less
efficiently because it must occur while the engine is thrusting. Fig. 23 shows the difference
between 5 and 6 stage aeroassisted interceptors. The 6 stage interceptor has a decided
advantage for the shorter flight times. Fig. 24 shows the affect of reducing the specific
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impulse. The 19 second reduction increases the launch mass by over 40 % for the shorter flight
times.

Additional solution results for the aeroassisted case suggest other trends. If all other
parameters are fixed, the optimal launch mass varies little if the range angle and intercept time of
the target vary in direct proportion. Increasing the axial drag coefficient, C, , by 0.02 increases
the launch mass by about 10 %. Increasing the mass density of the stages by 50 % decreases
the launch mass by about 6 %. More accurate models of atmospheric density have very little
effect on the launch mass.

6. The Mid-course Universal Curve

The aeroassisted trajectory in Fig. 19 has an obvious mid-course segment on which the
final payload coasts for an extended period of time until it begins its rise to the target. On the
segment there is a negative aerodynamic lift and the path is nearly horizontal. Such segments
have been observed on all optimal aeroassisted trajectories where performance requirements are
high, i.e., the time of flight is small, the target range angle is large and the target altitude is
small. It has been possible to model these mid-course phases accurately by a single universal
curve which relates altitude and speed. This unique relationship is obtained by balancing the
difference between centrifugal and gravity forces with negative aerodynamic lift and minimizing
the drag losses by choosing the angle of attack which maximizes the lift-to-drag ratio. It also
follows that the time-dependent motion of the payload on the universal curve has a universal
character.

The full derivation of the universal curve and its consequences is quite lengthy. Papers
[32, 33, and in Appendix A] contain the details. Here we indicate the main results. The
required balance of forces on the nearly horizontal trajectory is achieved by setting the normal
acceleration, Vdydr, and yequal to zero in (1). The result is the universal curve, an expression

which relates the altitude and speed:
V= (1+H)12 (1 -%(1+H) P(H)}-\2, (13)

By using a local exponential representation for the density and making a very accurate
approximation a simple formula for the universal curve is obtained:

V=G(H)=(1-3eHl e, (14)

Along this universal curve there are drag losses and V must decrease. This in turn causes H,
0, ¥ and o« to depend on 7. By using the equations of motion (1) and going through some

further approximations it is possible to integrate them and obtain simple formulas for the
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dependencies. Nondimensional plots of the functions are shown in Fig. 25. The variable x is
given by a linear transformation of 7. The ranges of variables which are shown are adequate for
any reasonable target conditions.

The accuracy of the formulas has been found to be extremely high. The formulas have
been used in many of our numerical solutions of the minimum launch mass problem. This
reduces the number of parameters needed to represent the angle of attack program and improves

the conditioning of the optimization problem. The result is a considerable saving in computer
time. Moreover, the normalized functions in Fig. 25 give a clear picture of how H, 6, ¥ and V

vary during the mid-course phase.

7. Performance of Multi-stage Rocket (Semi-analytical Approach)

For a system of n stages, if the specific impulse /,, and the structural efficiency ratio k,

are the same for all stages, then a known optimal property is that the staging ratios are the same.
In this case it can be shown that the ratio of the payload mass to the initial mass is

mp _ [ ) Vtotal -I 1
L = L(1+ks)exp T o -k (15

) nls,g,coso s_}

where o is the average angle of attack during the ascent and the total velocity is

Vtotal = Vburnou: + AVg + AVD

(16)

Here

[f tf

AV, = jg sin y dt, AV, = J‘ (DIm) dt (17)
0

are the velocity losses due to gravity and drag acceleration, respectively. The following
procedure is used to obtain AV and AV,

Based on a typical variation of the flight path angle y as discussed in [32, 33, and in Appendix
A], we assume that

sin Y= C-‘/‘t (18)
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where the time constant 7is to be selected to satisfy the final altitude. Then AV, is obtained by a
simple quadrature, while we have an integral relation for the current velocity

t
V() =) - J'(D/m) dt (19)
0

where f (¢) is a known function. We start the computation with D = 0 to generate the elements
of the trajectory in altitude and velocity. These elements are used to evaluate AV, for the next

iteration. Usually AV, tends to its final value after 4 or § iterations.

This scheme has been used to compute the boost phase. Compared to the exact optimal
solution it provides excellent agreement.

For the overall aeroassisted interception trajectory, we assume that the coasting phase is
strictly at constant altitude and the last phase for ascent to intercept is strictly in the vacuum.
Explicit solutions for these phases are available. Together with the simplified program for the
boost phase, the intercept trajectories have been computed using the data in [32, 33, and in
Appendix A] and the accuracy obtained is such that the error is between 5 and 15%. These
results are shown in Figs. 26 and 27. They can be compared with the exact results in Figs. 23
and 24.

8. The Attitude Control Scheme

Another portion of the research study has been concerned with the investigation of
simple, innovative means of attitude control of the final homing interceptor stage when it is out
of the atmosphere. To minimize weight and complexity, a time-optimal attitude control method
which uses only a single small control jet has been studied. The method assumes that the final
stage is spinning about its x body axis, the axis of axial symmetry. The main rocket engine is
also aligned along the x body axis and is continuously thrusting. Through control of the
attitude, the main-engine thrust is pointed in the direction required to bring the trajectory onto a
collision course with the target. The single control thruster is aligned along the direction of the z
body axis and therefore at right angles to the spin axis x. This small control jet can then provide
a pitching moment about the y body axis. Attitude control is achieved by turning on this
thruster for only a fraction of each roll revolution of the spinning missile. Since no moment is
applied about the x axis and since the inertia /, = I, due to axial symmetry, @, the x component
of missile angular velocity, remains constant and equal to its initial spin rate.

Each discrete change in attitude requires at least two thrusting pulses from the control
jet. In the two-pulse case, the first pulse produces an increment in angular momentum
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perpendicular to the spin axis x. The second control-jet pulse is applied half a role period later
to cancel the angular momentum increment perpendicular to the spin axis, which has now been
changed in direction by the desired attitude angle increment. The size of the incremental change
in attitude angle can be varied by changing the duration of each control-jet pulse.

The attitude control problem is described by a set of five nonlinear state equations
involving the rates of change of two transverse angular velocity components, wy and @,, and
three Euler angles y,0 and ¢. It turns out to be more convenient to define transformed Euler
angles such that the final desired pointing angle is represented by 6 = y = 0. Solution of the
time-optimal control problem requires the integration of ten nonlinear differential equations (five
state equations and five costate equations) with trial initial conditions on the costate variables.
The polarity of one of the costates determines whether the control thruster is turned on or off.
Thus the solution consists of the control thruster turn-on and turn-off times which take the
spinning missile from its initial state to its desired final state (the prescribed pointing direction as
given by 6 =0 and y =0, with @, = @, = 0) at the final time Ty. To avoid the difficulties
inherent in the many iterations needed to solve each case for this type of optimal control
problem, two alternative approaches have been successfully developed. For details see
references [35, 36, 37, and in Appendix Al.

The first approach is limited to the case where only two control thruster firings are
needed. As noted above, the first thruster firing is used to accelerate the rocket toward the
desired final state, the second to brake the motion so that the stage arrives at the desired pointing
direction with zero transverse angular velocity. Ty, T2, T3 and T4 (= Ty) are defined as the
first turn-on, first turn-off, second turn-on and second turn-off times, respectively. Starting
with given initial conditions, the five state equations of motion are integrated numerically for
trial values of T and T,. It turns out that T3 and T4 can be expressed as analytic functions of
the state at T2 such that the final transverse angular velocity will be zero. A gradient-type
algorithm is developed which iterates on T} and 75 until the final Euler angles 8 and wat T4 (=
Ty are equal to zero within a prescribed €. This approach does not require integration of the
costate equations and has the further advantage of only requiring iterations on two parameters
(T, and T;). Based on .his approach a table of two four-vaniable functions, one for the first
turn-on time T}, the second for the first turn-off time T, can be constructed. Starting with
arbitrary initial conditions as entries to the table, T; and T; are determined by table lookup and
linear interpolation. For times greater than T the missile states become new initial conditions
for the same control law, as defined by the table entries. Then the newly determined Ty and T
values are in fact equivalent to the original T3 and T4 values associated with the two-thrust
maneuver. Simulation runs of an interceptor stage using a control law based on this function-
generation scheme have demonstrated near time-optimal performance. This function-generation
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method is especially suitable for on-board microprocessor implementation using current and
projected VLSI memory chips.

In the second approach the state and costate equations are solved backwards in time
from the final time Ty using numerical integration. Each backward integration is started with the
prescribed final states and trial initial conditions for the five costates. Since one of the costates
can arbitrarily be set equal to 1, this is equivalent to four adjustable initial conditions. Every
numerical solution generates an optimal control law. From each backward-time solution the set
of initial conditions for which the observed on-off control law is optimal can be determined.
Time-optimal switching times which span the entire required space of initial states in forward
time can be generated by repeating the backward-time solution for different values of the four
costate initial conditions. These results can in turn be used to generate the same type of four-
variable function tables for turn-on and turn-off times T; and T3, as described above in the first
approach. But in this case we are no longer restricted to the two-thrust solution, as in the first
approach. Here the time-optimal control law can consist of any number of thruster firings, as
needed to reach the final pointing state. Thus an arbitrarily large set of initial states can be
handled by the function tables.

To summarize, a practical scheme has been developed for time-optimal control of a
spinning interceptor which uses only one control thruster and is particularly compatible with
VLSI memory technology. Although developed for attitude control of an interceptor rocket out
of the atmosphere, the method has the potential of being combined with the boundary-layer
injection scheme for control at hypersonic speeds in the atmosphere, which has been the subject
of Part I of this final research report.

9. Minimum Fuel Interception with Time Constraint

This analysis applies to both the case of ground-launched interceptor and space-based
interceptor. We assume that at a certain time f,, called the acquisition time, the trajectory of the
target as defined by the position vector r(¢) is known. Let r () be the current position vector of
the interceptor. It is proposed to make the necessary correction to r(s) with minimum fuel
consumption such that r(z) = r,(1) for a certain final time ¢, such that 7, <t,<r, ., where ¢, is a
prescribed upper limit, (Fig. 28).

We consider the general case of three dimensional flight in the vacuum about a spherical
earth. The engine thrust is assumed to be sufficiently high such that the velo~ity change is
impulsive. Then by the maximum principle, the impulse AV is parallel to the primer vector p,
which is the adjoint vector associated to the velocity vector. Since the function p,{¢) can be
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expressed explicitly in terms of elementary integrals, we can write the set of necessary
conditions for optimality. They consist of:

- The kinematic relations for transfer between orbits, including the Lambert solution for
prescribed time of flight.

- The optimality conditions: p, parallel to AV, and p, = llp|dl = 1 at the time of application of
the impulse.

- The transversality condition which expresses the fact that the final velocity is free in the
case of pure interception. This condition is

P, (Vr,-V)=0 (20)

and it shows that at the final time the relative velocity is orthogonai to the adjoint vector p,

associated to the position vector.
Finally, there is the condition

Py ¢ 1, te [50] . 21

The procedure for the computation is as follows:

Use one impulse applied at the initial time ¢, to find the solution satisfying all the
boundary conditions, including equation (20). Then we check condition (21). If it is satisfied,
then the trajectory computed is optimal. If condition (21) is not satisfied and if p,(¢,) > O, the
unique impulse must be applied at a certain time ¢, >1, after an initial coasting phase to bring the
interceptor to a more appropriate position to initiate the change in the trajectory. This time ¢, is
computed with the additional condition p,(t,) = 0. If the condition (21) is not satisfied during a
time interval (¢,,1,) where 1,<t,<t,<t, then a mid-course impulse, applied at a time ¢, should be
applied. The trajectory must be recomputed using two impulses AV, and AV, will all conditions
satisfied.

All the equations involved as presented in [31, and in Appendix A] are given in explicit
form and several numerical examples are presented.

10. Reachable Domain for Interception at Hyperbolic Speeds
As discussed in previous sections, for a short time interception of an ICBM at low

altitude a multi-stage earth-based interceptor must accelerate to hyperbolic speed. In practice, at
a time 1, , about 2 to 3 minutes before the intended interception time ¢, revised information about
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the trajectory of the target r{f), may dictate a correction in the trajectory of the interceptor, from
the reference nominal trajectory r,(¢) to the actual trajectory r(z). Then, for a given fuel potential
for the last interceptor stage it is necessary to assess the possibility of a successful interception.
This fuel potential is conveniently expressed in terms of the total characteristic velocity AV,
available for the maneuver.

By definition, the reachable domain at the time ¢ is the set of all points P attainable by the
interceptor, using all the available AV,. From [31, and in Appendix A], it is known that the
largest set for the points P is obtained by applying the maximum impulse at the acquisition time
1,. For any point P inside this domain, interception can be achieved with a smaller impulse.

We have derived the exact equations for the computation of the reachable surface
S(AV,t) which is the boundary of the reachable domain for a given AV. For small AV the
equations which generate S(AV,f) can be linearized. It is then seen that the reachable surface is
an ellipsoid and it is approximately a sphere for short time of flight, (Fig. 29). Properties of
this surface and its mathematical characterization were presented in [35, and in Appendix A].

The condition for interception may be expressed in terms of a capture function F, for
which an explicit formula has been derived. Let Ar (1) =r, - rp,~(Axp,AynAzr) be the relative
position between the reference point P, of the interceptor on its nominal trajectory (without

correction) and the target 7. Suppose
F (Axp,Ay;,Az,t) < IIAVIR

is satisfied for all ¢ € [¢;,t5] , where IIAVIl is the characteristic velocity available. Then
interception is possible for any tin [z,5,].

The concept of reachable domain can also be used to determine the requirements for
defense of an area on the surface of the earth which may be the intended target of ICBMs.

III. Suggested Future Work

Based on the work done under this contract, the following extensions to the work
completed and new studies are suggested as areas of future work.

) Aerodynamic Control Using Gas Injection Into the Boundary Layer

1) Inclusion of equilibriuin chemistry (dissociation and reaction) in the Navier-
Stokes code. The stability of the shear layer is sensitive to the temperature
distribution in this layer, which is affected by chemical reactions which may
occur. Frozen and equilibrium flow calculations allow these effects to be
bracketed.
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2)

3)

4)

5)

6)

7)

Improvement of numerical code efficiency so as to handle separated flows
economically, in terms of computer time. This will involve implementation of
implicit time-marching or mult-grid relaxation, or both.

Definitive study of strip blowing, including both analytical and numerical
studies, and including cases of simple and multiple strips.

Study of shear-layer stability in hypersonic flows, both analytically and
numerically. Little previous work has been done on this problem, which must
be understood before extensive practical use can be made of the injection of
gases in the boundary layer for aerodynamic control.

Numerical study of temporal effects associated with stopping and starting
blowing. Steady state examples give satisfactory results. Any problems
associated with the unsteady processes when starting or stopping the blowing
bear upon the feasibility of using surface blowing for control purposes,
especially if a rotating vehicle with a control which is on only during part of the
rotation is consid¥<d. This study will involve extending the temporal accuracy
of the codes.

Study of effects of increasing altitude, to a point where free molecule flow
exists; calcuation of jet forces needed for vacuum conditions (no boundary
layer). It is not possible to cover the whole range from continuum to vacuum
conditions computationally.

Consideration of three-dimensional, axially symmetric body in hypersonic flow
at an angle of attack.

II) Combined Atmospheric and Exo-atmospheric Attitude and Trajectory Control

1y

2)

Extension of the research on attitude control out of the atmosphere to integrate it
with the research on generation of aerodynamic forces at hypersonic speeds
using boundary-layer injection (Part I).

Extension of the time-optimal control laws developed for a spinning missile with
an on-off thruster to the continuously-thrusting case, where hot gas is switched
back and forth from one nozzle to another. This single control scheme has the
advantage that it can be utilized both for attitude control in the atmosphere, using
boundary-layer injection, and for control out of the atmosphere.
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3)

4)

5)

6)

Modification of the thrust-switching scheme to provide high-resolution attitude
control by means of pulse-width modulation of the control-jet switch.

Implementation of closed-loop control with high sample rates by storing only
one-bit switch position data in the multivariable function table for the time-
optimal control law, based on the desired attitude and current measurements of
missile attitude and attitude rate. The multivariable function scheme for storing
control-jet switch times, as developed in the research to date, uses on-line table
lookup with linear interpolation to determine thruster turn-on and turnoff times.
The proposed new scheme offers possible advantages over the table-lookup
scheme. It is potentially simpler from a hardware point of view and achieves
direct closed loop control rather than partially open loop control.

Develop minimum-fuel thruster control laws.

Extend the parametric studies of trajectory optimization with the support of the
simplified trajectory optimization program developed during the last six months.
This research would be used to provide performance requirements for the
attitude control schemes described above.
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Table 1. Numerical Data for Optimal Trajectories in Figure 1

Type of Solution  Launch Mass (kg) h (km)

Aeroassisted

Zero Lift Atmospheric

Keplerian

Type of Solution
Aeroassisted
Zero Lift Atmospheric

Keplerian

18,990

23,070

50,720
Coasting time
between 4th

0
0
90.6

58.3
57.0
64.6

and Sthstage  h(km)
63.7
66.5

127.8

41

Y
1.68
1.89
1.82

<

2.11
1.96
2.10

Burnout conditions for 4th stage

O(deg) Y(deg) t(seQ)

2.2 3.2 40.6
25 35 42.5
5.8 -1.6 75.2

Burnout conditions for 5th stage
80cg) y(dep) tfseq)
3.7 0 52.6
240 0.005 2019
19.5 -4.7 182.0




Blowing
Velocity

Strong
Blowing

Weak
Blowing

o(1) X/X,

Merged Strong Weak
Layer Interaction Interaction

Fig. 1 Qualitative sketch of wedge flow field with weak or strong blowing and weak or

strong interaction. (Speckled regions are viscous layers.)
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Fig. 2 Qualitative profiles of blown-gas mass fraction Y, velocity
component u, temperature T, and pressure p.
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Fig. 4 (a): profiles of scaled velocity component u (a) and scaled temperature Tx10 () in

viscous shear-layer; (b): comparison with second-order asymptotic solutions for u (——)
and T (— —) near lower boundary {= (blow-up of region near origin in part (a)).
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Fig. 5 Surface pressure p-p vs. x for various rates of air injection.
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Fig. 6 Scaled force-change AF(L/Xt)”z/(M“Zazp“L) vs. scaled mass flow-rate
(T, /T, 2W/X )/, 0 p _u, L) for various cases.
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Fig. 7 AF vs. m for various flight regimes.
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Fig. 9: Carpet plot of the density for srong blowing along a flat plate in Mach 20 flow. A
smoothly curving shock in physical space becomes kinked in computational space when the

grid is improperly alined.
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Fig. 10: Velocity profiles for a Blasius boundary layer.
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Fig. 11: Mach number contour plots for strong interaction on a wedge with constant
temperature air injection. The injected air temperature is equal to the free-stream air

temperature.
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Fig. 12: Mach number contour plot for strong interaction on a wedge with constant

temperature air injection. The injected air temperature is equal to four times the free-stream
air temperature.
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Fig. 13: Wall pressure protiles tor constant temperature air injection with the injected air
temperature equal to four times the tree-stream air temperature.
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Fig. 14: Wall pressure profiles for constant density air injection with the injected air
density equal to twenty-five times the free-stream air density.
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Fig. 15: Temperature distribution along the wall for the constant-density injection case.
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Fig. 16: Mach number contour plots for stri
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Fig. 17: Velocity vectors in the separated flow region just ahead of the first strip.
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Fig. 21 Optimal trajectories for minimum launch mass: A-Kepleri»n, B-aeroassistcd,
C-zero-lift atmospheric, D-bumout of fifth stage, E-bumout ¢. :ourth stage,
F-end of coast for fifth stage. Payload = 10 kg.; range angle =45 deg,;
target altitude = 400 km.; flight time = 360 sec.
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Fig. 22 Optimal launch mass as a function of flight time. Number of stages = 5;
payload = 10 kg.; range angle = 45 deg.; target altitude = 200 km.;
: specific impulse = 300 sec.
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Fig. 23 Optimal launch mass as a function of flight time for aeroassisted trajectories.
Payload = 10 kg.; range angle = 45 deg.; target altitude = 200 km.;
specific impulse = 300 sec.
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Fig. 24 Optimal launch mass as a function of flight time for aeroassisted trajectories.
Number of stages = §; payload = 10 kg.; range angle = 45 deg.; target altitude = 200 km.
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Fig. 26 Optimal solutions based on semi-analytic approach.
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Fig. 27 Optimal solutions based on semi-analytic approach.
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Fig. 28 Intercept trajectory.
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Fig. 29 The reachable surface with AV] > AV>.
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Hypersonic viscous interaction with strong blowing

By A. F. MESSITER AND M. D. MATARRESE

Department of Aerospace Engineering, The University of Michigan,
Ann Arbor, MI 48109-2140, USA

Solutions are obtained for hypersonic viscous interaction along a flat plate in the presence
of strong boundary-layer blowing, with inverse-square-root injection velocity, for laminar
flow over a cold wall and with a power-law viscosity-temperature relation. In the strong-
interaction region, self-similarity is preserved if the blowing is such that the thicknesses of
the inviscid shock layer, viscous shear layer, and inviscid blown layer all have the same
order of magnitude. The weak-interaction region is also considered, and an approximate
interpolation is used to join the solutions for the surface pressure. Certain difficulties in
asymptotic matching are discussed, and the extension to flow past a thin wedge is shown.

1. Introduction

Drastic changes in the pressure variation along a boundary layer can occur in the
presence of strong surface blowing, especially if the blowing velocity is large enough that
the boundary layer is completely "blown off” from the surface. In that event a region of
nearly inviscid injected fluid is present between the thin viscous layer and the wall, with the
pressure distribution determined through an interaction with the external flow. For
subsonic or for incompressible laminar flow asymptotic solutions beyond blowoff were
given by Kassoy (1971) and by Klemp & Acrivos (1972). For supersonic speeds Cole &
Aroesty (1968) considered strong blowing in limiting cases such that the thickness of the
blown-off shear layer could be neglected.

Among other studies, only a few were primarily concerned with obtaining asymptotic
solutions for strong blowing. Kubota & Fernandez (1968) solved the boundary-layer
equations for compressible laminar flow in the limit of large mass injection. Wallace &
Kemp (1969) followed Cole & Aroesty (1968) in considering examples for which the
shear-layer thickness can be neglected. Smith & Stewartson (1973b) treated a supersonic
boundary layer with uniform blowing that starts at a point downstream of the leading edge,




choosing the velocity to have an order of magnitude consistent with triple-deck scaling. A
good summary of this and other earlier work was given by Smith & Stewartson (1973a).

At hypersonic speeds interaction effects are present even in the absence of blowing. If
a flat plate is placed in a uniform hypersonic flow, the boundary-layer displacement effect
causes the appearance of a shock wave. Far enough downstream the pressure change
across the shock wave is small ("weak interaction") but in a region further forward the
pressure ratio across the shock becomes large ("strong interaction”). At points still closer
to the leading edge, all relevant distances are of the same order of magnitude, so that the
boundary-layer approximation fails, and the distinction between boundary layer, inviscid
shock layer, and shock wave disappears ("merged-layer regime"). These effects have
been discussed in the books by Hayes & Probstein (1959) and by Stewartson (1964);
additional details concerning asymptotic matching of the strong-interaction solutions have
been given by Bush (1966) and by Lee & Cheng (1969).

Self-similarity for hypersonic strong interaction is preserved for surface blowing of a
power-law form consistent with the usual interaction solutions. Li & Gross (1961) gave
numerical results for the strong-interaction problem with weak blowing such that the
boundary layer is not yet blown off. Of interest in the present work is the case of larger
blowing velocity such that the injected gas occupies a "blown layer” having thickness of the
same order as the thickness of the viscous shear layer and the inviscid "shock layer”
between the viscous layer and the shock wave. The shock layer is described by
hypersonic small-disturbance theory (Van Dyke 1954), the blown layer by "inviscid
boundary-layer equations” and the viscous layer by the usual boundary-layer equations, all
in self-similar form. In the case considered here, the injected gas is taken to have density
of the same order as the density in the undisturbed external flow, whereas the density in the
high-temperature viscous layer is much lower. Solutions are described for each of the
three layers, weak interaction further downstream is discussed for the same wall
conditions, and the extension to wedge flow is shown.

2. Formulation

A semi-infinite flat plate is placed in a uniform hypersonic flow with velocity ues,
Pressure poo, density po, temperature T.,, Mach number M., and viscosity coefficient pleo.

Coordinates X and Y are measured along and normal to the plate, respectively, with origin
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at the leading edge. The nondimensional velocity u=(u,v), pressure p, density p,
temperature T, and viscosity coeffient p are all referred to their undisturbed values. The
viscosity is assumed to depend on the temperature through the power-law relation p=To,
where 1/2<wx1; the case w=1 is also considered briefly.

The nondimensional continuity, momentum, and energy equations for steady flow can
be written

div pu =0, @.1)
pu-Vu + (YM.2)'1Vp = Re-l div 1, (2.2)
pu-V(H/2) = Re-! div (tu - q), (2.3)

where y=cp/Cy is the ratio of specific heats; H is the total enthalpy, nondimensional with
Uw2/2; the coordinates are x=X/Xy and y=Y/X;, with X; a reference length stll to be
defined; and Re=uc.X,/V.. is the Reynolds number, with Voo=Hoo/Peo- The stress tensor is
1 = 2ue + Al div u, where A is the second viscosity coefficient, nondimensional with pl.;
€ is the rate-of-strain tensor; and I is the identity tensor. The heat conduction vector is
q=-uVT/ [(y-l)M,.zPr}, where Pr is the Prandtl number. For simplicity the specific.
heats are taken to be constant; the injected gas is considered to be air; a perfect gas is
assumed, so that p=pT; and the Prandtl number is taken equal to one.

The reference length X, is chosen such that for X»X,; the boundary layer has only a
small effect on the external flow ("weak interaction") whereas for X«X; the changes in
pressure are large in comparison with the undisturbed pressure ("strong interaction"); that
is, the shock wave is very weak for X»X; but very strong for X«X;. For weak interaction
the shock wave has slope =1/M.., whereas the streamline inclination resulting from the
boundary-layer displacement effect is O{(Mew!*?/VRe)(X/X)!72}. Requiring the latter
expression to be much smaller than 1/M. when X»X, leads to the choice
X =M. *2%y_Ju., and so the two large parameters M.. and Re are related by Re= M..4*2®,
The coordinates then are defined by

x =XXp,  y=Y/Xp  Xe=MotOv . (2.4)

The usual hypersonic viscous interaction parameter X, based on a distance X, is

proportional to x12_ Solutions for the strong- and weak-interaction regions are found by
considering limits of equations (2.1) through (2.3) as Mw— 0 and x—0 or x50

respectively.




It is convenient to think first in terms of the dividing case, represented by equations
obtained in the limit a3 M.,— with x fixed. In this case the Mach number based on
velocity normal to the shock wave is neither close to one nor large. With strong blowing
the boundary layer is blown off the wall as a viscous free shear layer, again described in
the limit by the boundary-layer equations. An inviscid shock layer between the shock
wave and the shear layer is described in a first approximation by the hypersonic-small-
disturbance equations. The injected gas in a low-speed region below the shear layer is also
described asymptotically by inviscid-flow equations. Solutions in adjacent regions are to
be joined by appropriate asymptotic matching.

The nondimensional stream function y (referred to p.u..X,) is defined by

Vy = pu, Wx =-pv. (2.5)

It can be seen that the mass flow y will have different orders of magnitude in different
parts of the flow. For x=0(1), the shock wave is located at y=0(1/M.) and has slope
O(1/Mx); the mass flow crossing the shock wave is y=0(1/M.); and in the inviscid flow
behind the shock wave p-1=0(1), p=0(1), and T=O(1). The viscous shear layer has high
temperature T=O(M..2), because some of the kinetic energy is converted to thermal energy,
and low density p=0(1Ma2), because p=pT. If diffusion and convection terms are
required to be of the same order for X=0(X,), where X_ is defined by (2.4), the shear-layer
thickness is O(1/Ms), and since u=0(1) the mass flow in the shear layer is y=0(1/M..3).
In the blown layer adjacent to the wall, the density p is O(1) for the case to be considered,
and for p-1=0(1) the momentum equation then gives u=0(1/M..). If the blown-layer
thickness is also to be O(1/M.), the mass flow must be y=0(1/M.2). The reference
streamline is chosen such that y>0 for air from the free stream and y<0 for the blown gas;
the streamline y=0 lies within the shear layer.

It appears helpful to introduce notation which takes into account the different orders of
magnitude in the different flow regions. For this purpose a hat, bar and tilde will denote
variables in the inviscid shock layer, the viscous shear layer, and the inviscid blown layer,
respectively. The comresponding stream-function coordinates are, respectively,

=M.y, V=Moy,  P=Maly. (2.6)

In the shock layer, the dependent variables are expanded in the form




v=Ma L) + ..., 2.7

p=PXY) + ... (2.8)
p=p(R\) + ... (2.9)
y=Ma" 15X, ¥) + ..., (2.10)

for O<f<{rs, where Vs is the value of ¥ at the shock wave; also u=1+..., and T= p/3. In
the shear layer,

u=u(x,§) + ..., @2.11)
P=M.e 2p(x,9) + ..., (2.12)
T=M2T(X,¥) + ..., (2.13)
=M lyx,9) + ..., (2.14)

and P =p T. The range for  is Yy(x)<W<ss, where Yo(x)<0 is to be determined. In the
blown layer,

u=Ms (X, ) + ..., @2.15)
V=M BH(X, ) + (2.16)
P=p(x,¥) + ..., 2.17)
T=T(x,9) + ... (2.18)
y=M5x,9) + ..., (2.19)

and p=pT. The range for ¥ is Pw(x)<P<0, where Py (x) is the value of § at the wall and
is specified. The combined displacement effect of the viscous layer and blown layer
implies an effective thin body shape

y=MlA(x),  AX)=A(x)+A(x), (2.20)

where the functions A(x) and A(x) represent, respectively, the contributions of the viscous
and blown layers, to be determined. When M. is large, omitted terms are small in
comparison with terms retained in each of the expansions (2.7)-(2.19). Formulations for

the strong- and weak-interaction problems are obtained by further expansion of (2.7)
through (2.20) as x—0 or x—oo respectively.




In the strong-interaction limit x—0, the hypersonic small-disturbance equations possess
a family of self-similar solutions corresponding to flows past thin power-law bodies. The
viscous-layer equations likewise possess a family of self-similar solutions. If the

solutions in the two regions are required to match correctly, it is found that the similarity

variable (for y) must be Mwy/x*/* and the pressure in the viscous layer is p-p1x” /2 (e. g.,

Stewartson 1964). In the presence of surface blowing the self-similarity is preserved if the

blowing velocity and wall temperature are such that the thickness of the blown layer is also
OM.e"'x34). The effective body shape A(x) then has the form

A(x)~A1x73, A1=A1+4,, (2.21)

where A and A are constants to be determined, and the contributions of the viscous and

blown layers are A(x)~A1x> and A(x)}~&;x*4. It also follows that the shock-wave slope
dY/dX is no longer small when x=O(M..™), i. ., when X=O(M.,,2“’v..lu..); a strong-
interaction solution thus describes the flow region M. #«x«1. The various flow regions
are indicated in figure 1.

For strong interaction it is seen, with the help of the shock-wave jump conditions, that
the mass flow in the inviscid shock layer is Y=Ma.o"y=O(M.."'x#). In the shear layer,

the teraperature is T-Ma>T=O(M...2) and the density (from the perfect-gas law) is p~Mao2p
=O(M..'2x'm); the velocity is u=0(1), and so the mass flow is much smaller, namely
y=My=0(M..3x!/*). In the case to be considered here, the wall density is taken to be
Pw~Pw=0(1), and the Bernoulli equation for compressible flow gives u~M. 1@
=OM."'x13) for the injected gas; the required mass flow Y=M.o 2§ =<O(Mao2x2) in the
blown layer is therefore provided by a blowing velocity VMoo 20y, =O(M,.,'2x'l/2). It
follows, for example, that the mass flow pwVvw at the wall is smaller than the mass flow
Peolleed(A/M, )/dx through the shock wave by a factor O(1/M..), and that the wall shear
stress (Ldu/dy),, is smaller than the momentum flux Pwvw? at the surface by a factor
O(M.."%®). The three different mass flows suggest the three similarity variables (for y)
needed for the inviscid shock Iayer, the viscous shear layer, and the inviscid blown layer:

C=ynd8,  T=gn',  C=gi'2. . @2




The choices for the blown layer are, however, not unique. The required conditions
(mass conservation, perfect-gas law, Bemoulli equation) are found to be satisfied if
M,,=(const.) M_‘lx' 12 where Mw=vawTw'm is the Mach number of the injected gas at
the surface. Another possible choice that would satisfy this requirement is T, =const. and
VW.—.MM‘2 Viw x4 giving a mass flow \’|'I=O(M,,'2x1/4) that has the same x-dependence as
the mass flow in the shear layer.  This case corresponds more closely to the flows
considered by Kubota & Fernandez (1968) and Li & Gross (1961). Although the wall
temperature then would not match directly with the higher temperature in the merged-layer
regime, the solution methods are otherwise the same, with some different details for the
blown layer and for the final result relating surface pressure and blowing velocity.

The layer thicknesses and mass flows for strong interaction corresponding to (2.21)
and (2.22) are summarized in figure 2. Solutions for the three regions can be obtained
separately, each leading to a relation between pressure and a layer thickness, as shown in
§3. First-order matching conditions then allow the results to be combined so as to
determine the relation between surface pressure and blowing velocity. Some numerical
results are described in §4.

3. Solutions
3.1 Inviscid shock layer

In a first approximation the inviscid flow at high Mach number past a thin two-
dimensional body is equivalent to one-dimensional unsteady flow in a plane slab of fluid
passing over the body at the undisturbed speed, and is described by the hypersonic small-
disturbance equations (Van Dyke 1954). In terms of independent variables x and \?I the

continuity, momentum, entropy, and streamline equations become, respectively,

(P)x- ¥+ ... =0, 3.1)
Ve +Y7IpY + ... =0, (3.2)
6x - (76/6)6)( +..=0, @3.3)
79 - (1) + ... =0. (3.4)




If the shock wave \f}=\fl,(x) is very strong, so that \ﬁ,'»l, the corresponding jump
conditions across the shock are

Ps = (H1/(Y-1) + ., (3.5)
Ps = 2y UMY+ 1)+ ..., (3.6)
Ve =2Wg/(Y+]) + .., (3.7)

¥s = Vs, (3.8)

where 63=6(x, \475), etc. As \47—)0, at the inner "edge" of the shock layer, §—)A(x) and
A
v—oA'(x).

In the limit a3 Mog—3ee, x—0, and Y—0 such that Mu*x—e0 and £ = /x4 is held
fixed, the functions appearing in (2.7) through (2.10) can be expressed in self-similar form
by '

v=x144,0 + ..., (3.9)
p=x250 + ... (3.10)

p=p1d) + .. 3.11)
y=xH50) + ... | (3.12)

Substitution into (3.1) through (3.4) then provides a system of first-order nonlinear
ordinary differential equations, subject to boundary conditions found from the shock
relations (3.5) through (3.8).  The entropy equation can be integrated to give a relation

between 61 and 612
1Y y+1 4\2 (A D /3
61’=(1+-) =G) (rL (315) L (3.13)
¥-1 2y Yis) \&1%)\¥1s

Numerical integration of the remaining equations for y=1.4, with §'1—>A, and 31—+3A1/4 as
&-—)0, leads to the values

p1(0)/A,% = 1.1194, Ayyys = 0.5912, (3.14)




which agree with values given by Brown & Stewartson (1975) and by Li and Gross
(1961). Since py~constant as {—0, (3.13) shows that ;=0(¢¥3) as £-0. Solutions
for the viscous and blown layers are now needed to determine A1 in terms of the blowing
velocity at the surface.

3.2 Inviscid blown layer

Solutions for the blown layer follow directly from the results of Cole and Aroesty
1968). Since the layer is thin, in a first approximation the pressure is a function only of x
and the differential equations are "inviscid boundary-layer equations":

Plitix + ¥ 'Px + ... = 0, (3.15)
Py +..=0, (3.16)

Px - (B/P)Ppx +... =0, (3.17)
Vg - Bu)! =0, (3.18)

where.p=p(x). The mass flow at the wall is =y (x), where dw=-fwVwdx; the inverse
relationship x=xw (), where dxw=-(§wvw)'ldﬁl, identifies a streamline by the location at
which it leaves the wall. At the wall the density fy and the blowing velocity ¥y are to be
specified, and can be expressed by evaluating f and ¥ either at x and Jw(x) or at xw and
Y(xw). The latter interpretation is needed in most of the following, so pw and vy will

denote quantities which are constant along streamlines. Integration of the entropy and
momentum equations leads to solutions for § and i in terms of x and xy:

s \1/y
p= (;l) Bw + oo (3.19)
Pw
= Y¥-1)/
az=_2_1‘w{1-(:?—IY 1'}+..., (3.20)
Y-1 Pw

where p=p(x) and Pw=p(xw); Tw=Pw/Pw is the wall temperature, as a function of x,.

If now x—0 with =/x 7 fixed, where §,,<{<0, the solutions can be expanded in the
form




d=xMu@® + .., (3.21)
v=xH® + ..., (3.22)
F=p1D+ ... (3.23)
p=x12p +.., ' (3.24)
y=xM5® + .., (3.25)

where P) is a constant to be determined, the blowing velocity is Vw=xw'm'\71w, and
Tw=-2P1wV1w is a specified constant. With iiw-ﬁlxw'm and E=xw/x, the streamline
shapes are found by substituting the expansions of (3.19) and (3.20) in (3.18):

- -1 M2 _ _ i
. dYX =- (#) Viw § (v+2)/(4Y) (1_&(7‘1)/(27)) 12 d§, (3.26)
1w

where T1= $1/P1, Tiw=T1Qw), etc. The effective layer thickness A1x¥4 is found by
integration between O and 1. After a change of variable n=£(*-1¥(20),

1
5. W2
A= 2P %g,, Jn"’z”‘*‘”(l-n)"’z an
(r-1)p1
N NY
- (2ry-1) 2 2 (p‘“_'_"‘w) r(—* )/1‘(——1 ) 3.27)
v\ P 2(v-1) 2(r-1)

in agreement with a result of Cole & Aroesty (1968). For y=1.4, A1=3.501

Previwdmnt 2. If the shear-layer thickness were negligible, i. e., if Aj«Ay, then
A1=A1 and the surface pressure would be found by substituting this result in (3.14), with

p1=p1(0). In the case of primary interest here, however, A; can not be neglected; the
required shear-layer solution is given in the next subsection.

In the weak-interaction region downstream, for x»1, the form of solution is different
because pressure changes are small rather than large. If the blowing velocity remains
vw(x)=M..,'271wx'l/2 =M‘..,“’Vw,(u,‘,X/va.,)‘l/2 for x»1, the mass flow in the blown layer is
again \]'1=O(x”2). The pressure perturbation p-1, in a first approximation, is now
proportional to the slope dA/dx of the equivalent body. From the Bernoulli equation, the

10




velocity U is O((j‘)-l)m). A mass-flow balance for the blown layer then shows that, for
x»1,

5-1=xPp +.., (3.28)
i=x50 + ..., (3.29)
7=x 5D + ..., (3.30)

where a double tilde is used to distinguish where necessary from the symbols introduced
for x«1. The solutions are found in the same way as for x«1, but are simpler in form
because the density p~p1w is nearly constant for x»1:

= 51123
52 = 2B {(ZDI\ZVNJZ (173 1} ' 3.31)
YP1w -y
B1 = 2YA1/3 = 223y Brwv1wd) B, (3.32)

where the effective thickness is Z(x)=31xm. The constant-pressure shear layer for x»1
has only a higher-order effect since its thickness A(x)=0(x!?) is small in comparison with
the blown-layer thickness A(x). The air that has passed through the strong shock wave
further upstream, and therefore has higher entropy, contributes still another higher-order

displacement effect that likewise can be neglected in a first approximation. The value
(3.32) is consistent with the results of Cole & Aroesty (1968).

3.3 Viscous shear layer

The viscous shear layer is described in a first approximation as a mixing layer between
air moving with uniform speed at zero temperature and another gas, here taken also to be

air, at rest with zero temperature. In terms of independent variables x and  the boundary-
layer approximations to the momentum, total-enthalpy, and streamline equations are

By + = px = p (T Tag)g + .. (3.33)
Ypu

Hy =p (T uHp)g + .. (3.34)

yg =G, (3.35)
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where H= t2+2T/(y-1).

Asymptotic representations of the solutions as x—0 are expressed in terms of the

similarity variable {= /x4, for {y<f<ee, in the form

i=0@ + ..., (3.36)
T=T1i®) + ..., (3.37)
p=x"p + ..., (3.38)
y=x530 + ... (3 39)

where {o<0 and pj=constant; also p=p/T. The value of g, which characterizes the
amount of mass entrained in the lower part of the shear layer, is to be determined.
Substitution gives the ordinary differential equations

- oy et

g uran’)', (3.40)
2y
s=, Y1=
ATTy +2—le e Ty + -Dp T a2, (3.41)
7 _—TL (3.42)
puu

The solutions should match with the shock-layer solutions as E—)oo and with the blown-
layer solutions as {—Lo. Thus it is required that u;—1, T1—0 as {0 and u}—0,
T1—0 as {—>To. The effective layer thickness is Ajx3/4, where A is the integral of (3.42)

from (g to e=; the integral is finite because the temperature decreases sufficiently rapidly as

ﬁ—)&o. The numerical solution is carried out in terms of a rescaled independent variable

ﬁl‘mﬁ, and p) is to be found later from the appropriate matching conditions.

The differential equations (3.40) and (3.41) are sinmilar at §=zo, For 1/2<w<]1, the
range of particular interest, the solutions as {—Co have the form u;=({-{p)®u’ and

T1=(C-Z0)PT*, where ut and T are analytic, and the exponents are a=a/(20—1) and
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B=1/Qw~1). The coefficients T1®"! Gy of the second derivatives in (3.40) and (3.41) are

P therefore O(C-Lo) as £ >y The numerical integration, described in detail elsewhere
(Matarrese and Messiter 1989), is based on a Newton iteration scheme, starting from

simple assumed distributions for uj and T) over a range §L<§<°o_ Initally the lower limit

CL is chosen large enough to ensure that {; >{g. However, the solutions thus obtained for

11 and T do not have the correct asymptotic behavior when i-—)zx_ Next {1 is decreased
until the numerical and asymptotic solutions are seen to agree closely for small u; and Ty;

the value found for p~1/2Cg is believed to be accurate to within less than 0.1%. The results
for v=1.4 and w=0.75 are

1 2% = -3.683, p1124; = 0.3518. (3.43)

The corresponding velocity and temperature functions 4 and T} are plotted against py" V2
® in figure 3, for 131‘1/2_(;0<§1'm2<eo; T} has been normalized with its maximum value Tim.

Calculation of the pressure is completed by matching p; as {—ee with the shock-layer

pressure 61 evaluated as C—)O and matching p; as E—aﬁo with the blown-layer pressure p;
as {—0. Thus

P1=p1=P1(0). (3.44)

Now (3.14), (3.27), and (3.43) can be combined to eliminate the layer thicknesses, as
® shown in §4 below.

If @—1/2, the exponents & and P obtained above in the solutions for =50 Will both
become infinite, and clearly a different kind of asymptotic form is required. Numerical

[ solutions for @=0.7 and @=0.6, not shown here, suggest that the lower limit {y——oo as
©—1/2. When w=1/2, it then follows from (3.40) and (3.41) that u; and T| become

exponentally small as ﬁ—)-oo.
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For w=1 the asymptotic behavior as {—To seems easier to understand in terms of
Howarth variables defined by dY=pdy, dX=pdx and the similarity variable n=Y/(2X)12,

The stream function and total enthalpy are \47=(2X)1/2F(n)+... and ﬁ:G(q)+,_,
respectively, where F and G satisfy the ordinary differential equations F'+FF"=y1(y.1)
-(F'2-G) and G"+FG'=0. As 1 —-o0, G=0O(eN) and F-Fp=0(neN), with Fo (corres-

ponding to Lo) to be determined; the fact that G=O{(F-Fo)/In(F-Fg)} as N—-eo implies the

presence of a logarithm in T as {—{o. The numerical solution when @=1 can be obtained
by a shooting method to give

El-lﬂ'co =-2.066, Ellﬂal = 0.2100. (3.45)

3.4 Higher-order matching

Matching of the shock-layer and shear-layer solutions requires for each variable that the

solutions evaluated as &—90 and E—-)oo agree term by term. Ast—)o, the inner edge of the

shock layer is approached from above and the hypersonic-small-disturbance solutions
A

(3.13) and (3.14) show that the temperature has the form T~T=ﬁ/6=x"ﬂﬁl/61+...

=O(x 12E-2(3My a5 x—0 and 6-»0. However, as {—eo, the outer edge of the shear layer

is approached from below and it follows from (3.41) that T-M.,2T=M..2p/p=0(C #(1-®)),
Since these two representations for T are not the same, the matching is not complete.
Bush (1966) has shown that an additional "layer" is required between the shock layer and
the shear layer. A solution for T in terms of a variable §B=M.,A\V/xc, for proper choices

of the exponents A and C, allows matching in a first approximation with T as {g—o and

with Mo 2T as {g—0. When w=1, the solution for T decays exponendally as {ooo; Lee &
Cheng (1969) have shown that the matching difficulty is resolved not by adding another
layer but by including higher-order terms in the shock-layer and shear-layer solutions.

Another difficulty arises with respect to matching of the shear-layer and blown-
layer solutions. As C—)Eo, the inner edge of the shear layer is approached from above

with u-3=0{(§-E0)¥ @) and T-Mu’T=0(Me2C-C0)"**™V).  As {0, the outer
edge of the blown layer is approached from below with u~Mu'5=0(Ma"x"14(-0) 172} and
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’1‘.."(':1'5/§=0[x’l"z(—'ﬁ)'w }. The matching again is not complete, and it is not entirely clear
how to proceed. For a first anempt, one might think that an additional solution is needed

in a region between the shear layer and the blown layer, for v close to x1/ 4&0 and ¥ close

to M.;lxl/“zo. The blown-layer and viscous-layer solutions for u would then be required
to match with this new solution. If the matching for u is considered first, one is led to
introduce a similarity variable

£ = (Max )~V My - x14T, (3.46)

and to try representations
1= Maxy 1208 (%) + ..., (3.47)
T = Mox Py VD TY (L% + ., (3.48)

for -eo<{*<os. However, this procedure leads to approximate equations that are just

simplified versions of (3.40) and (3.41), with {=Gg and Gj2<<T;. Except for additive
integration constants, the solutions are already contained within the solutions to (3.40) and
(3.41), and are not sufficient to allow the proper functional forms for both {*—-o0 and
{*—oo. Itis probably necessary both to include higher-order terms and to consider still
other limit processes for a complete description of the local asymptotic structure. These
details are not needed if only a first approximation to the pressure is desired.

If instead w=1 the definition (3.46) for {* again is appropriate, as is the representation
(3.47) for u, but T has the modified form

T = {(Mox4)12 In (Mox /) )1 TY(G®) + ... (3.49)

The presence of the logarithm is associated with the exponential forms of u and T in terms
of the Howarth variables noted at the end of the preceding subsection. As a result, the
pressure-gradient term is absent from the momentum equation and two integrations can be
carried out directly to give

(u] - ujg) + ujg!n (uf - ujp) =- Lol /4 py), (3.50)
where u}o=2(5171w) ">/ ((y-1)(- )} /2, for matching with (3.20). It follows also that
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T} = (const.) (u] - ulp). (3.51)

The representations for u and T match properly as {*—oo, and u approaches a small
constant value as {*—-os, but T1" is exponentially small as {*—-co and higher-order terms
would be needed for completeness, as at the outer edge of the shear layer (Lee & Cheng
1969).

These considerations indicate some of the difficulties encountered in attempting to
derive higher-order terms and thus to obtain estimates of the largest neglected effects. For

x=0(1), it is fairly easy to see that the relative errors in the differential equations obtained in
each of the three limits (shock layer, viscous layer, blown layer) are all O(M,,'z). The

expansions of the flow variables as M_,—<= would then seem to proceed in integer powers
of M_"2. But the higher-order terms not yet matched will evidently require larger
correction terms, probably in all three flow regions. It is therefore not possible to assess
the error without further consideration of the next terms in each of the expansions.
Moreover, in the strong-interaction limit x—0 the solutions will have expansions in
positive powers of x4 and (M_x4)"1, and in the weak-interaction limit x—>ee the
solutions will be found as series expansions in negative powers of x, so that still other
higher-order terms would have to be considered.

An additional question concerns the behavior of the flow for weaker blowing. If the
blowing velocity is decreased by taking ¥yw«1, the injected mass \y=2M..'25 lwvlwxlﬂ
remains large in comparison with the mass flow Mao.3x1/4|§0| in the lower part of the shear
layer for values of x such that i\d..xm »Vlw'l. The location of blowoff is at x=0('1\d...ﬁh,,,)'4
and moves downstream as V1 decreases from O(1) to O(M..'}). When ¥1w=0M.'1), the
boundary layer is attached throughout the strong-interaction region x«1, and in the weak-
interaction region x»1 the injected mass is of the same order as the mass flow OM..3x172)
required for the constant-pressure free shear layer. A special solution is needed for a
narrow range of Mu¥1y close to a dividing value, as for incompressible flow (Kassoy
1971, Klemp & Acrivos 1972).

3.5 Wedge flow

Inviscid hypersonic flow past a thin wedge is easily described with the help of suitable
approximations to the shock-wave jump conditions. If the wedge half-angle is a«1, and
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Maa»l, (3.5) gives p~(y+1)/(y-1) and (3.6) with the shock slope Moofs'~(Y+1)M.o0/2
gives p~y(¥+1)M..2a2/2 in the uniform flow between the shock wave and the wedge
surface; the Mach number there is M~{Y(¥-1)/2}-12a-1. If now a boundary layer is
considered, its temperature is again T=0(M..?), but the density p=p/T is O(a?). For weak
interaction the boundary-layer thickness is O{Me.“’a"(v..X/u“)m}, smaller by a factor
O(M,.,‘la'l) than for a flat plate. This thickness is small in comparison with the distance
(¥-1)aX/2 between wedge surface and shock wave, and the shock wave is therefore weak,
only if X»Mw2®a#ve/us. The reference length X, should therefore be X =M., 20q~4
‘Veo/Uoe for the wedge, smaller by a factor (Mwa)™* than for a flat plate. The
nondimensional coordinates x, y and y are now defined in terms of this new X,. The
scaled y-coordinates, however, are measured relative to the surface, with Mao™! replaced by
a, so that

¥y=9=(y- ax)c. (3.52)

With the new X; the wedge flow is identical to flow past a flat plate in the first
approximation when X«X;. That is, the wedge thickness is small in comparison with the
thickness of the disturbed-flow region when X«X,. Since the merged-layer regime again'
is present for X=0(Moe29Voo/ti0), i. €., for x=0(a?), the strong-interaction description
given above now applies to the region ot

plate in view of the revised definition for X.

«x«l, a region which is shorter than for a flat

In the weak-interaction region for x» 1, the flow between the shear layer and the strong
shock wave from the wedge vertex is, however, described in a different way, in terms of
small perturbations about the uniform flow behind the shock wave. A linearized flow
description is again appropriate, but both families of waves are present because outgoing
waves are reflected from the shock wave; the reflected waves are weak in a numerical
sense, but not in an asymptotic sense, since the ratio of reflected-wave strength to incident-
wave strength does not vanish under the limit processes considered here. In the blown
layer the density is nearly constant, and so the incompressible form of the Bernoulli
equation is appropriate in the first approximation.

The required solution in the blown layer was given by Cole and Aroesty (1968). The
blowing velocity is taken to be vw=a2‘\71wx'Vz:Muw"?lw(u..X/Vw)'m, the same as chosen
for the flat plate. For x— oo, the pressure perturbation is related to u by the Bernoulli
equation for incompressible flow and, for matching with the perturbed wedge flow, has the

17




same order of magnitude as the product of (M‘,‘,(z)2 and the ratio of a typical perturbation in
streamline slope to the wedge angle. In the blown layer (3.19) and (3.20) are replaced by

2

p~P1w=constant, u (p(xw)-p(x)}, (3.53)

——2
MoP1w

where again the value of xw defines a streamline. The solutions for u and p when x»1 are
expanded in terms of T=9/x 12 a

u=ax65,@ + .., p =Ml (Y 1)2 + x 135y + ..}, (3.54)

where U is found in terms of p; from (3.53) and p; is a constant to be determined later.
Again the double tilde is used where necessary to distinguish from quantities defined for
x«1. The streamline shapes are found, again using yy=pu and §=xw/x, from

7=x25D+..., dy=- (Y%)m V1w &R (181312 gg, (3.55)
P1

The blown layer has the shape of an effective body
y~R1x23, R1=4 (11w 2511 2, (3.56)
where A is found by integration of (3.55).

In the region between the shear layer and the shock wave the flow is nearly uniform

with the flow variables equal to the values obtained from the shock-wave relations. As
X—oo,

v=af{l+vix,) + ...}, (3.57)
p= Mola2{Yy+1)2 + p1(x.§) + ...}, (3.58)
p= % sp1(x,) + .., (3.59)

where lvil«l, Ipjl«l, and Ipjl«l. The perturbations in v, p, and p are described by the
linearized form of the hypersonic small-disturbance equations (3.1) through (3.3):

¥+1

+_
Pix Y'l

+1
vig=0,  Lovipalpg=0,  pix-2PrDp=0.  (3.60)
¥y 2
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where pi is easily eliminated. Linearized boundary conditions are given at the wedge
surface =0 and at the undisturbed shock-wave position §=(y-1)x/2:

vi(x,0) = dR(x)dx, prixGh0 = yep D) vix G, 3.61)

where Z(x)=31x2/3 .

The differential equations (3.60) and boundary conditions (3.61) are satisfied by
solutions in the self-similar form x‘mfn(9/x). Since pj and v must each satisfy a wave

equation, the solutions are known moreover to be functions only of xtMg$, where
Mo=(Y(¥-1)12} 2. 1t follows that

ipl = c1{x+ Mof) 1~ +ca(x-Mof) 13, (3.62)
S .2 BN Mof) 1R - ca(x-Mo§) /3. (3.63)
(+1DMo

The integration constants c and ¢3 are found from the boundary conditions to be

k173 2(y+ 1A k13
=T By
A 3(y-1DMok>-4)

= 3.64)

where

L o 20-DMo < EDMe-l

2 U2
= ’ , = . 3.65
2+(y-1)Mp (y-1)Mo+1 Mo ( ) 69

-

The solution to (3.60) and (3.61) for arbitrary A(x) has been discussed by Chemyi (1961).
The result is found as an infinite series, since a disturbance reaching the surface contains
the effects of infinitely many wave reflections. Chernyi (1961) and Cole and Aroesty
(1968) also specialized this solution for a power-law form of A(x); eqns. (3.62)-(3.65)
duplicate their results.

Setting § = 0 in (3.62) gives Py in terms of A;:

2+ DA A+k3)
3¢ 1)MokB-A)

p1=x"p1(x,0) = (3.66)
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A second relation between p; and A1 is found from the blown-layer solution (3.56). |
Eliminating &;,

13y \2/3
ZM)_(’:i_)) , (3.67)

= 2 (v BTy DB
P1=2 (Y P1wViw’) (3(7-1)Mo(k1/3-l)

For Y=1.4, P1= 3.615 (P1wv1wd)!3.

4. Numerical Results

The strong-interaction solutions are obtained in the limit as x—0 and Maox 4o, with
M.ey/x" held fixed. In this limit the nondimensional velocity u is zero in the blown layer,
increases from zero to one across the viscous layer, and is equal to one in the shock layer.
The scaled temperature M.2T is zero, in the limit, in the blown layer and in the shock layer,
and is O(1) in the viscous layer. For finite but large Mex !/, the first corrections to the
zero values of u and M..2T in the blown layer are proportional to powers of (Max4y 1,
The remaining parameters are the ratio of specific heats ¥y, here taken equal to 1.4; the
exponent @ in the viscosity law u=T®; and a blowing parameter 5,wv1w2, related to the
momentum flux normal to the surface.

In the first approximation for the strong-interaction region, the pressures (3.24) and
(3.38) in the blown layer and viscous layer are functions of x only and are equal to the

pressure (3.10) evaluated at the inner edge of the shock layer. The result (3.44) is Py = p1
=p1(0). The quantities 61(0)/A12, 511/231, and]'anl are given by (3.14), (3.27), and

(3.43) respectively. With Aj=A;+4 according to (2.21), the pressure p,, at the surface
is found for y=1.4 and w=0.75 as

Py = (0.372143.703(F 1, F1w D) P1x 12 + .. (4.1)
If instead w=1, the surface pressure becomes

Pw = (0.222143.703(F 1, F1w D) P)x 12 4 . (4.2)
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The ratio of the shear-layer thickness A, to the blown-layer thickness A, is found from
(3.27), (3.43), and (3.44), and is seen to decrease as )y, V1> increases. When w=0.75,
the ratio is

A8y = 0.119/F1T1wH)2, 4.3)

and when w=1.0, the constant is replaced by 0.071. Thus the two layer thicknesses are
equal when the value of (ﬁlwvlwz) 172 is about 0.1; in the numerical calculations this
parameter is taken equal to 0.1 or 0.2. The shocc-wave shape for @=0.75 is then found
from (2.20), (2.21), and (3.14) to be

ys = M 1{0.9515 + 9.469(B 1, V142 2} 12x34 4 .. (4.4)

If w=1, the constant 0.9515 is replaced by 0.5680.

The shear-layer velocity and temperature profiles of figure 3 are replotted in figure 4 as

functions of M..y/x3/4, instead of El'lsz,.:"\v/x”“, for two values of the exponent ® and
for p 1w71w2=0.01, i. e., for nearly equal blown-layer and shear-layer thicknesses. The"

hot low-density shear layer occupies the region A< M..,y/x3/4< A1+A; and thus has a
clearly defined thickness, as shown both by the figure and by the integral of (3.42). The
blown layer is defined to be the region 0<Msy/x3**<A; between the shear layer and the
wall and contains almost all of the blown gas, with the exception of an amount smaller by a
factor Of (M..xl/4)’l} that is entrained in the lower part of the shear layer. The streamline
separating free-stream air from the blown gas thus lies within the shear layer. Since the
scaled viscosity coefficient in (3.33) and (3.34) is proportional to T®, and T<1, an increase

in @ decreases the diffusion rate and therefore decreases the shear-layer thickness A;. In

figure 4 a change in @ from @=0.75 to w=1.0 is seen to decrease A; by a factor of about
2/3, and also, because of coupling through the pressure, to give a small increase in the

blown-layer thickness A1, such that the sum A= 31+51 decreases. Since the shock-wave
position 915 is proportional 10 Ay, as seen in (3.14), the shock-wave slope then decreases,
and the pressure also decreases, as shown by (4.1) and (4.2).

In figure 5 the shear-layer velocity u is plotted against M‘..,y/x:’/4 for w=0.75 and for
three values of the blowing parameter, ﬁlwv1w2=o.01, 0.02, and 0.04. Stronger blowing
of course moves the shear layer further from the wall and also decreases its thickness
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slightdy. The velocity in the blown layer, smaller by a factor O{(M.oxl/ 4)'l }, is shown for
Mox4=10, P14 ¥1w2=0.01, and ¥;w=0.05. An inverse composite solution is also
shown, obtained by adding the blown-layer and shear-layer solutions for Mewy/x>/ in terms
of u, for O<u<l, and subtracting the common part, namely A;. This composite is
uniformly valid to O(1) in Mo.,y/x3/4, since the shear-layer and blown-layer solutions are
recovered by taking limits with u fixed and with Maox /4y fixed, respectively. It would
also be possible to obtain a shock-layer solution for u-1 and to use the results of Bush
(1966) to show a smooth joining with the shear-layer solution.

Profiles of the scaled temperature M..2T are shown in figure 6 for two of the cases,
B1w¥1w2=0.01 and 0.04, shown in figure 5. The maximum temperature Tr, is seen to be
about T= 0.0315 Ma.2Tw, for the selected values y=1.4 and @=0.75. This value of Tp is
less than 1/6 of the isentropic stagnation temperature Ty, and so real-gas effects are delayed
to a somewhat higher Mach number than if the full To were reached. A composite solution
for M.,y/x3/4 in terms of Moe2T, 0<T<Tp, is shown for the same numerical values as in
figure 5. To allow the correct T at y=0, the curve has been displaced downward by a
small (higher-order) amount; the correction is chosen to decrease linearly with T} and
disappears at T1=Tp.

Figure 7 shows the strong-interaction pressure for three values of the blowing
parameter ﬁlwvlwz, for ®=0.75 and for w=1.0. As predicted by (4.1) and (4.2), the
pressure is linear in (mw‘\?lwz) 12 and decreases as  increases.

The weak-interaction pressure, for X»X,, differs from a constant value by O(x"1/3), as
in the solutions (3.28) for a flat plate and (3.62) for a wedge. A calculadon for X=0(X,),
however, would require numerical solution of partial differential equations in the shock

layer and shear layer. Nevertheless, since the extensions (unwarranted, to be sure) of the
asymptotic solutions toward X=X do not lie very far apart, a reasonable idea of the

approximate surface pressure in this region can be found quite easily by interpolating in
some simple arbitrary way between the strong-interaction and weak-interaction results.
The interpolation formula adopted here is

Pw-1l= r{pw(suong) -1} + (l‘r){pw(weak) - l}

=rpix 12+ (1-0F x 13, (4.6)
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where P is given by (3.32), and

1
" cosh Bx’

B = cosh’12, (4.7)

so that r decreases from 1 to 0 as x increases from 0 to e. The free parameter [ in the
interpolation formula has been chosen so that r=1/2 when x=1. That is, at x=1 the
interpolated solution is chosen to0 lie halfway between the pressures that would be predicted
if the strong-interaction and weak-interaction solutions were evaluated there (beyond their
respective regions of validity x«1 and x»1). For a thin wedge, the required rescaling gives

Pw _ y(y+1)
Moa)? 2

=r ﬁlx'ln + (l—r)’ﬁlx'm. (4.8)

where now x = X/{Moo2ma—4\/oo/u°o} and P, is given by (3.67). Interpolated surface
pressures for a wedge are shown in figure 8. Although the error appears to be small, it
should be remembered that the value (4.7) for B is arbitrary, and a change in B would shift
the location of the interpolated curve. The function r is likewise arbitrary, and there is no

theoretical basis for the suggested choice; the accuracy of the interpolated curve in figure 8
remains uncertain in the absence of a numerical solution for X=0(X).

Additional numerical results for a wedge in the case of uniform surface temperature.
including the integrated force change as a function of blowing rate and other parameters,
have been given by Matarrese er al. (1990).

5. Concluding remarks

The extension of hypersonic viscous strong-interaction theory to permit large surface
blowing velocity requires that choices be made among several possibilities for the surface
boundary conditions. Two constraints have been imposed: the perfect-gas law must be
satisfied, and the blown-layer thickness is taken to be of the same order of magnitude as the
viscous- and shock-layer thicknesses. Here the density oi the blown gas has been chosen
to be of the same order as the undisturbed air density and to be constant at the wall; the
corresponding form for the blowing velocity is then fixed. Other choices can be made,
leading to differences in the blown-layer solution and in some cases differences in the
conditions at the lower "edge" of the shear layer.
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Even a first approximation is found to introduce some subtleties. Although the three
appropriate limit processes have been successfully applied to give self-consistent
asymptotic flow representations in the three layers, the matching of solutions in adjacent
layers is not complete, and would have to be refined if higher approximations, presumably
proceeding in powers of x and (Moox"14y], were desired. Moreover, the results do not
reduce in a simple way to the solutions for weak blowing. As for incompressible flow, a
special limiting case would have to be considered in the neighborhood of blowoff, when
the amount of injected mass is close to the mass entrained in the lower part of the free shear
layer. Finally, numerical solution of the shear-layer equations for w#1 was not successful
with a straightforward shooting technique, and ultimately was carried out by an approach to
the desired result through neighboring sclutions.

In the present formulation the scaled results contain only a single blowing parameter
which measures the normal momentum flux at the surface. (The ratio of specific heats and
the exponent in the viscosity law of course appear as well.) As an obvious extension it is
planned to consider the injected gas as different from air, so that in general one more
differential equation is required, with one or more additional nondimensional parameters.
Further numerical studies will then be carried out. It is also anticipated that the present
formulation will serve as a useful test case for comparison with numerical Euler and
Navier-Stokes codes.

This research was supported in part by the U. S. Army Strategic Defense Command.
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Figure captions

1. Flow regions for viscous interaction in hypersonic flow past a flat plate with strong blowing.
2. Orders of magnitude for layer thicknesses and mass flows in strong-interaction region.

3. Scaled shear-layer solutions in strong-interaction limit, as functions of the stream-function
variable p1" 2T = p1" M. w/x 14, for @=0.75:
Tln 1m-

, velocity Uy; ———, temperature

4. Scaled shear-layer solutions in strong-interaction limit, as functions of M*"/xmﬁl. for

p lwvlw2=o.01: , velocity u for ©=0.75; — - —, velocity u; for @=1.0; — - —,
temperature Ty/Ty, for @=0.75; - - - -, temperature T;/T;, for ®=1.0.
5. Velocity profiles u vs. M,.,y/x3/4 in strong-interaction region, for ¥=0.75: — — —, shear
layer for Py ¥1w2=0.01; - - - -, blown layer for 54,7, 2=0.01, M. x'/=10, §;,=4;
, composite for ﬁlwi"lw2=0.01, M.x"4=10, Piw=4; — - —, shear layer for
p lwv1w2=o.02; — - - —, shear layer for 61w7/1w2=0.04.

6. Temperature profiles M,.,7’I‘ vs. M(.‘,y/w”/4 in strong-interaction region, for w=0.75:
— — —, shear layer for 51w71w2=0.01; - - - -, blown layer for 51wvlw2=0.01.
M..x'"=10, §;,,=4; ——, composite for P,71,,°=0.01, M x4=10, ;=4

— - - —, shear layer for §1wv,w2=o.04.

7. Surface pressure distribution p,, vs. x, in strong-interaction region: , O Praviw’
=0.01 and @=0.75; — — —, for P1,,¥1,,>=0.01 and @=1.0; — - —, for P, ¥, >=0.04
and @=0.75; - - - -, O Py V1, 2=0.04 and w=1.0; — - - —, for P, ¥1,,>=0.16 and

w=0.75; ----- , for P1u¥1w>=0.16 and w=1.0.
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8. Surface pressure Ap,, =(p,- m;i)(Ma.a)z}/(M«a)z vs. x=X/{M..2‘°a'4v,./u,,} for

L thin wedge, for §1,¥1,,> =0.01 and @=0.75: — ==, strong-interaction solution; - - - .

weak- interaction solution;

, interpolated solution.
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Note

A Numerical Method for the Self-similar Hypersonic
Viscous Shear Layer

1. INTRODUCTION

In laminar fluid motion at high Reynolds numbers, viscous forces are important
primarily in thin layers described by the boundary-layer approximation to the Navier-
Stokes equations. For the special case in which the pressure varies as a power of the
distance x along such a shear layer, the solutions have a self-similar form. If the stream
function y is chosen as the independent variable, and the pressure is p=(const.)xb, the
similarity variable is {=(const.)y/x{!*"¥2, The nondimensional boundary-layer equations

may then be written as

o U, BT
(T uuy + == - 2= 18
@hTy + E20T + ERT+ 0T w?= 0 @

where u=u({) is the fluid velocity; T=T({) is the temperature; v is the ratio of specific heats;
the Prandtl number has been taken equal to one; the viscosity coefficient has been assumed
proportional to T®, with 1/2<w<I; and the Mach number has been absorbed in the

temperature and density.

The boundary conditions for (1) and (2) will typically be given at two values of §, say
§=oe and {=,, where the value of {, depends on the problem considered. For a
boundary layer along an impermeable surface, {,=0; for a free shear layer, L, is a negative
constant to be determined as part of the solution. If the Mach number in the inviscid flow

above the shear layer is very large (hypersonic), the temperature on one or both sides of the




layer will be low relative to the very high peak temperature in the layer, and in a firgt
approximation T—0 on one or both boundaries. The example to be considered here is
concerned with "hypersonic strong viscous interaction” in the presence of large surface
injection. The viscous boundary layer is blown away from the surface to form a free shear
layer, and the interaction with inviscic flow behind a strong shock wave leads to a pressure

variation with b=-1/2; details are discussed in [1].

In the limiting case of interest here, both u and T are zero at §=§0, and so the

coefficients of u" and T in (1) and (2) also vanish at that point. The asymptotic behavior
as { ¢, is given by u=O{(C-§0)°y(2‘°"l)} and T=0{(C-§0)U(2""1)}; if @—1, a logarithm
also appears, whereas if w—1/2, then {y— -°° and the behavior is exponential rather than

algebraic. The boundary conditions to be used for (1)-(2) when 1/2<w<]1 are then

t—-Ca u ~ (const)({-Lp@ e, T ~ (const.)(§-L V@D 3)

{ oo u—1, T-0 4)

The system (1)-(2) with boundary conditions (3)-(4) thus forms a two-point boundary-
value problem in which the location of one boundary, at which the solution is singular, is
unknown a priori zad must be determined as part of the solution. Knowledge of the
asymptotic forms (3) is found to be necessary for obtaining a numerical solution;
specifying u=T=0, for example, is not sufficient. (The asymptotic behavior as {—ee is

also known but will not be needed.)

Several numerical techniques have been used to solve the compressible laminar
boundary-layer equations. Early solutions with {o = O were computed by Cohen and
Reshotko [2] using a successive-approximation scheme. For the case {o << -1 (with {o

specified explicitly), shooting from the interior was found successful by Nachtsheim and




Green [3] as was the Newton-iteration finite-difference method described by Liu and Chiu
[4]. Nachtsheim and Swigert [5] developed a shooting method to handle asymptotic
boundary conditions. For the current problem, a Newton-based finite-difference method

utilizing continuation has been successful and is described below.

2. NUMERICAL METHOD

To handle the difficulties at the lower boundary, a continuation method is employed
with the location §; of this boundary treated as a free parameter. ({, denotes the value of
&y for which (3) is satisfied.) Trial numerical calculations show that if the boundary
condition u(&; )=T({; )=0 is adopted, then for §; >, solutions are found which do not
satisfy the requirement (3) as {—¢; , whereas if {; <L, the trivial solution u=T=0 is found
for {; <{<{y, with the desired behavior (3) occurring for 0<{-{y<<1. Figure 1 provides
an illustraton of such behavior for the case ¥ =1.4, ®=3/4, and b=-1/2 with the trial
solutions satisfying the boundary conditions u(; )=0, T({; )=T) , u(24)=1, T(24)=0. The
two curves to the left are typical of solutions with Ty >0, §; <&, and the two curves to the
right are typical of solutions with Ty =0, {; >{,; note that as T =0, u—0 and T—0 for
£ <C<Cy Thus the second and all higher derivatives of u and T are discontinuous at {=G,
and one may expect computational difficulties if an assumed location for the lower
boundary in some iterative numerical scheme is less than Co (that is, if §0 lies within the

computational domain).

The problem is now reformulated as follows. The new independent variable
X= C - CL (5)

is introduced, and solutions are considered on the truncated domain 0sx<xy;, where x; is

chosen large enough that (4) is satisfied within a specified tolerance (both 1-u and T are




O(x" (19} a5 x—30a). The system (1)-(2) will be written in terms of x as a two-clement

vector equation in the form
r(s; 5 ) =0 (6)

where sT= (u(x;&p), T(x;G1)), and r is the appropriate vector differential expression. The
boundary conditions

x=0: u=0, T=0 )
X=X{;: u=l1, T=0 (8)

are now adopted, together with the additional condition

=0 9
D ©)

where g is a function designed to monitor the solution behavior near the lower boundary,
vanishing only when (3) is satisfied. Starting with an initial guess §; @>, the numerical
procedure is to march in {; , solving (6)-(8) at each step, and approaching {, from above
so that the singularity at { lies outside the computational domain. Marching is terminated

when (9) is satisfied within some desired level of accuracy.

To solve the boundary-value problem (6)-(8) at each iteration level in {; , a Newton-

based method is adopted, utilizing second-order finite differences and a nonuniform

computational grid . Based upon the first two terms in the asymptotic expansions for u and

T as {—{,, it is found that (3) is an accurate representation of the solution with maximum
fractional error of order 10-3 over the small interval 0<§-{y<ga, where €3 is of order 10-3
for w=3/4. To resolve the solution in this small region without requiring an excessive

number of grid points, the "exponential” grid




Axg i=1 ., N (10)

is employed, where x5=0; Ax,= x, - X is specified (typically of order 104 to 10-3); and

the constant & = (x;,,- (x;-x.1) > 1 (=1.03 for example) satisfies

aN-1  x 1
a-l Axo ( )

with xy = xy specified (= 24 typically).

The system (6) may be written in a form suitable for numerical solution: the diffusion
terms are expanded and all negative powers of u and T are factored away to avoid possible
floating-point overflow during iteration and inaccuracies associated with computing ratios
of terms that vanish near Co; first and second derivatives are then replaced with three-point
central-difference formulas appropriate for the grid (10), e.g.,

. 2. o aly:
du/dx | ;. x = Uy = B ¥ (@® Dy - atujy (12)

] Ax; ja(1+a)

dzu/dxz I _ ~ Q... gﬂ-bl - (a+1)Uj + a&l (13)
*= i (Ax;. ) 2a(1+a)/2 '

where Ax; ) =x; - x;.;. The errors are O((ij)z) in (12), andif =1 + O(Ax;), in (13) as

well. The numerical approximation to system (6) thus reads

rj= (81, 8}, ;005 CL) = O((A%;)?) (14)

where the first element of r;is given by

(1 +b)

11 = T2 U + (@ DTu T+ S5 i EOTE) uy, --T‘“” (15)

XJJ

and the second by




1+b) . {(y-1)b .
rzj = Tj“j 'I',mj + ((m-l)Tx,-uj+Tjux,-+ (—2——(xj+§[)Tj(2 co)] ij.,. J’.‘Y_Tj(B )

+ (-T2 (16)

with the subscript j denoting evaluation at x;. Requiring (14) to vanish at the N-1 interior

grid points and using the boundary conditions (7)-(8), one obtains the nonlinear algebraic

system

R(S; &) =0 a7

soT=(0,0), sNT=(1,0) (18)

where ST = ST({, ) =(s;, s;, ..., Sn.1), and the “residual vector” RT = (ry, ry, ..., r)r 1)

Given a value of {; and an initial distribution S, the system (17)-(18) may be solved -

using a variant of Newton's method which reads at the kth iteration level (as denoted by

superscript k)
(OR/2S)®) AK) = — R(K) (19) -
Stk+1) ='S(k) + o'l(k)A(k) (20)

where (0R/9S)X) is tha 2(N-1)x2(N-1) Jacobian matrix associated with R(®), and A®) is
the solution of the linear system (19) (the estimated required change in S®) to give Rk+1) =
0). The "relaxation factor" ¢,(%) which limits the maximum fractional change in any

element of S&) over one iteration cycle, is defined by

01®) = min (1, 8/ max IAi(k)/Si(k) 1 @n
1

where 3 is a specified constant (= 0.3 typically), and A% and S;(¥) are the ith elements of

A and S&) respectively. The iterate S() is considered converged when

max | A0S k)| S g << 1 (22)
l .




where €, is specified (typically = 104). The matrix dR/dS is of block-tridiagonal form
with the jth 2x2 subdiagonal, diagonal, and superdiagonal blocks given by ar/asj_,,
dr/ds;, and dry/ds;,, respectively; system (19) may thus be solved efficiently using a

routine such as listed in [6].

Given the start-up values {; (@ and {; (V) (both > {g, ¢.g., 0.01 and 0), the (m+1)th

iterate §; (m*1) is computed using a variant of the secant method

Gulmed = £y - 0y - ??;L(m) AT (23)
where g(m) = g(§; (M) is-evaluated from S({; (W), the solution of (17)-(18) computed by
solving (19)-(20) with §; = {; (™) and the initial distribution S(§; (m-1)). The relaxation
factor, 0 < 6,(™) < 1, is included to avoid overshooting {y and is adjusted during marching
based on the number of iterations required to solve (17)-(18); specifically, if (23) gives a
value of {; (m+1) for which (19)-(20) does not converge within a specified number of
iterations, 0,(™ is replaced with a lower value such as (G,(™)2, (23) is then re-evaluated,
and the (m+1)th iteration restarted. It is found numerically that (19)-(20) will not converge
in the sense (22) when § < {g; thus the inclusion of o,(™ in (23) is a necessity. The

iterate §; ™ is considered converged when

[ mev-g /| g m] sey<<1 (24)

where ¢, is specified (typically = 10-5).

To compute S({ ), (19)-(20) may be solved starting with the simple piecewise linear
distributions u=x/6 for x<6, u=1 for x26, and T=TL(1-x/x(;); continuation is then applied
as the lower boundary temperature Ty is incrementally reduced from an initial value .02

(say) to 0, thus providing an initial distribution to begin marching in {;.




The choice of the "monitor function” g is arbitrary and need only provide a sufficient
condition for satisfying (3). One might for example select g(§, ) = dE/d{; where E is the
square of the Ly-norm of the relative error between the asymptotic and numerical solution
evaluated over the small interval 0 < x < €3; g vanishes when E is a minimum, i.e., when
L = Lo Since (19)-(20) will not converge when §; < {,, one may define a simpler

criterion on §; 2 {,alone. A possibility which works well for @ near 3/4 is

- Ti(1+a)2 - Tl
AXOQ(1+G)

g(CL) EL28 (25)

which is a second-order forward-difference representation of dT/dx(0; {y) with Ty = 0; this
expression is particularly well suited for the case @ = 3/4 since (3) gives T = O(x?) for

0 < x <<1 when {; = {,, and such quadratic behavior may be computed exactly by (25).

3. RESULTS

A typical solution computed using (25) is illustrated in figure 2 for y=1.4, w=3/4,
b=-1/2, N=200, Ax(=10-3 and x;;=24 (x=1.034). Both u and T versus x are plotted with
most of the computational domain shown in part (a), and a blow-up of the region
0<x<0.02 shown in part (b). For comparison, second-order asymptotic solutions are also
plotted in part (b) where relative errors between the numerical and asymptotic solutions are
seen to be of order 2% for 0<x<0.01. For the case shown, solutions computed with larger
N indicate that N=200 (which required approximately 3 minutes to compute on an Apollo
DN 4000) gives an accuracy of approximately 4 significant figures over regions where the
solution is of order 1, falling to approximately 2 significant figures near x=0; the computed

location of the lower boundary, {y=-3.683, is believed to be accurate to within less than

0.1%.

10




The rather large value of N required for reasonable accuracy, even with the use of grid
(10), is dictated by the need to resolve the solution near x=0. When the grid was overly
stretched (@ too large), accuracy was degraded and it proved difficult to obtain converged
solutions; the allowable amount of stretch is therefore limited and since Ax, must be quite
small, N must be large. If {, were known a priori, then the required resolution near x=0
would not be as great, and N=50 with the same xy and a (but larger Ax,) would have
provided an equivalent level of accuracy over most of the grid for the case illustrated in

figure 2.

The replacement of asymptotic boundary conditions with numerical boundary
conditions plus a sufficient condition g=0, e.g., the replacement of (3) with (7) plus (25),
appears to offer a useful general technique. In the example presented here, a particularly -
simple function g could be defined since the behavior of neighboring solutions was well
understood after computation of several trial solutions. Possibly the general case might
best be handled with g based on some least-square error measure, similar to the ideas

presented in [5].
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FIGURE CAPTIONS

1. Trial numerical solutions (broken lines) and the desired solution (solid line) for u (a)
and T (b) near {=y. With TL=0: {1 =-3.2 (— —); §{ =-3.4 (----). With {;=-5:

TL=104(—--—); TL=10"5 (—-—).

2. (a): profiles of u (a) and Tx10 (°); (b): comparison with second-order asymptotic

solutions for u (——) and T (— —) near x=0.
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Control of Hypersonic Aerodynamic Forces
with Surface Blowing

M. D. Matarrese,* A. F. Messiter,t and T. C., Adamson, Jr.3
University of Michigan, Ann Arbor, Michigan

Pressure forces are derived for laminar flow past a thin wedge at high Mach number and high
Reynolds number, with mass added at the surface according to a power-law velocity distribution
strong enough that the boundary layer is blown away from the wall as a free shear layer. Self-
similar solutions are obtained for the thin layer of blown gas adjacent to the surface, for the thin
viscous shear layer, and for the outer inviscid-flow region between the shear layer and the shock
wave. Pressures obtained in the strong- and weak-interaction regions are joined by a simple
interpolation formula. Integrated pressure forces are shown for a range of Mach numbers and
altitudes, for various wedge lengths and vertex angles, and for different injected gases.
Equilibrium dissociation of oxygen in the shear layer is found to have only a small effect on the
pressure forces.

Nomenclature
A = constant defined in Eq. (3.12)
C = constant defined in Eq. (2.13)
< = specific heat at constant pressure
D = coefficient in expression for layer thickness
D, = self-diffusion coefficient for undisturbed air
G = constant defined in Eq. (2.40)
h = enthalpy
H = atmospheric scale height
In = integral defined in Eq. (3.15)
J = exponent in Eq. (2.24)
J = defined following Eq. (2.42)
k = constant defined in Eq. (2.13)
Kp = proportionality constant for mass diffusion, Eq. (2.40)
Copyright © 1989 by authors. Published by American Institute of Aeronautics and Astronautics, Inc., with
permission.
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Kp = equilibrium constant for %02 20, Eq. (2.51)
K, = proportionality constant for diffusion of heat, Eq. (2.42)
Kip = proportionality constant for energy transfer by mass diffusion, Eq. (2.54)

Ku = proportionality constant in viscosity law, Eq. (2.41)

L = wedge length

m = total mass flow of injected gas, per unit span, defined in Eq. (2.24)

m = scaled mass flow of injected gas per unit area, defined in Eq. (2.20)
E)avg = scaled total mass flow of injected gas, per unit span, defined in Eq. (2.24)
M = Mach number

n = exponent in Eq. (2.9)

= pressure

p

P = scaled pressure perturbation defined in Egs. (3.7), (3.8)
Pr = Prandtl number, Co M /A, defined following Eq. (2.39)
q

Q

= exponent in Eq. (2.43)

= scaled mass flow defined in Egs. (3.7), (3.8)
r = function of x defined in Eq. (3.12)
R = nondimensional gas constant for mixture, defined in Eq. (2.35)
Re  =Reynolds number, u_L/v,_,

Sc = Schmidt number, u_/(p_D, ), defined following Eq (2.39)

T = temperature
u = x-component of velocity
v = y-component of velocity

= nondimensional coordinate in direction of undisturbed flow

X
X = coordinate in direction of undisturbed flow
X, = reference length defined in Eq. (2.1)

y = nondimensional coordinate normal to undisturbed flow
Y = coordinate normal to undisturbed flow

Y, = mass fraction of blown gas

Y,  =mass fraction of atomic oxygen

z = altitude

o = wedge vertex half-angle




B = shock-wave inclination angle

Y = ratio of specific heats

A = layer thickness

AF  =increase in normal force on wedge, above inviscid-flow value
€ = fraction of molecules which dissociate into oxygen atoms, Eq. (2.50)
€ = similarity variable defined in Eq. (2.43)

§g  =lowerlimit for §

A = thermal conductivity

K = viscosity coefficient

\ = kinematic viscosity

P = density

oy = ratio of molecular weight of blown gas to that of air

¢ = defined in Eq. (3.9)

X = defined in Eq. (3.10)

Y = nondimensional stream function

¥ .V, = lower and upper limits of ¥ in Eq. (3.1)

w = exponent in viscosity law

Subscripts

0 = (scaled) quantity in inviscid wedge flow

1 = coefficient in perturbation quantity

oo = undisturbed-flow value

a = air

b = blown gas

s = value at shock wave

w = value at wall

Superscripts

(s) = strong-interaction region

(w) = weak-interaction region

A = nondimensional quantity in outer inviscid-flow region
~ = nondimensional quantity in blown-gas layer

- = nondimensional quantity in viscous shear layer




Introduction

Control of flight vehicles at hypersonic speeds has usually been achieved by means of
moving control surfaces and/or by changing the magnitude and direction of the thrust vector. Asa
possible alternative method of control, it might be of interest to consider the use of boundary-layer
blowing to introduce desired modifications in pressure distributions over the surface and thus to
provide control forces on a specified part of a vehicle. Different injection patterns would be
possible, including distributed or strip blowing. In the present study a simple blowing
distribution is considered for the simplest possible geometry, a thin wedge in two-dimensional
hypersonic flow. If the mass rate of flow of injected gas is sufficiently large, the boundary layer
is completely blown off from the surface; this is the case considered here. The solutions can be
useful in several contexts. First, they provide a measure of the magnitudes of forces to be
expected for a given blowing rate at given flight conditions; second, they can be used to check
computer codes developed to handle more complex flow problems;l finally, they may have some
application in the related problems of cooling hypersonic vehicles by boundary-layer blowing, and
of the introduction of fuel into the combustion region of a SCRAMIJET.

Hypersonic flows of a perfect gas past simple shapes have been studied extensively using
inviscid-flow theory, and viscous interaction effects are also well understood. For a thin wedge
the effects of small perturbations in surface shape require solution of linearized equations.2 If the
perturbations are caused by the displacement thickness of a laminar boundary layer, the equations
for a constant-pressure boundary layer at high Mach number allow a complete description of the
flow at points far enough from the leading edge. In a region closer to the vertex where the
boundary-layer thickness is large compared to the wedge thickness (but streamline slopes are still
smaki), a self-similar solution is available,>* based on the hypersonic small-disturbance equations5
for the shock layer and boundary-layer equations for the viscous layer. The interactions of the
boundary layer with the external inviscid flow in these two regions are, respectively, "weak" and
"strong” interactions.

Surface injection of a gas in the strong-interaction region, for a suitable power-law velocity
variation, still allows a self-similar formulation but with modified boundary conditions. Li and

Gross® obtained numerical results for strong interaction using boundary-layer solutions with a
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nonzero normal velocity component at the surface, over a range of prescribed surface
temperatures. If the blowing is strong enough, however, the boundary layer is blown away from
the surface. Kubota and Fernandez’ considered a compressible free shear layer, with prescribed
power-law pressure gradient, and an additional thin layer of inviscid flow adjacent to the wall.
For still stronger blowing velocities the layer of blown gas is much thicker than the free shear layer
and the shear layer can be regarded as a surface of discontinuity. Cole and Arocsty8 described the
blown gas by "inviscid boundary-layer equations” and the shock layer again by hypersonic small-
disturbance equations. A useful summary of this and earlier related work was given by Smith and
Stewartson.”

When the blowing velocity has suitable strength, as well as an appropriate power-law
variation, in the strong-interaction region, the displacement effects of the blown gas and of the
shear layer are of the same order of magnitude.10 Solutions in the strong-interaction limit can then
be obtained independently for the thin layer of blown gas, the viscous free shear layer, and the
inviscid shock layer, with certain constants to be found by proper asymptotic matching. The
shock layer is described by the hypersonic small-disturbance equations,3 the viscous layer by the
usual boundary-layer equations, and the blown gas by inviscid boundary-layer equations.8 The
derivatdons of Ref. 10 were given primarily for a flat plate, with an application to a thin wedge
mentioned relatively briefly. Since the temperature in the shear layer is high, the scaled
temperature in the shear layer should approach zero both above and below. Numerical solution of
the shear-layer equations was carried out by a continuation method in which the mass flow
entrained in the lower part of the shear layer is varied untl the proper asymptotic behavior is
observed.!! The weak-interaction region can also be described by self-similar solutions; an
approximate interpolation formula was proposed in Ref. 10 for joining the surface pressures found
from the strong- and weak-interaction solutions.

The present study is concerned with pressure forces acting on a thin wedge in the presence
of mass injection at the surface having a power-law dependence on distance from the vertex. The
derivations of Ref. 10 are extended in several ways: to allow constant surface temperature rather

than constant surface density, as assumed in Ref. 10 to achieve some minor simplifications; to




allow arbitrary values of the hypersonic similarity parameter instead of requiring that the norma]
Mach number at the shock wave be large; to allow an injected gas different from air; to allow for
variable specific heats and oxygen dissociation in the viscous shear layer; and to provide a variety
of numerical results for pressure forces caused by blowing.

The main objective is to relate the pressure distribution at the wedge surface to the
prescribed surface conditions, expressed by the specified distribution of injected mass and either a
constant wall density or a constant wall temperature. Solutions for the inviscid outer flow provide
the relation between the surface pressure and the effective body shape; solutions for the inviscid
layer of blown gas give an expression for the thickness of this layer in terms of the surface
pressure and the Mach number at the wall, here expressed in terms of the surface mass flux and the
temperature or density at the wall; the solution for the viscous shear layer provides a relation
between the shear-layer thickness and the surface pressure. Combining these results with the help
of first-order matching conditions then yields the desired results.

The following section summarizes the analysis, with emphasis on the new aspects.
Numerical results for integrated forces are then shown and discussed for a range of Mach numbers
and altitudes, for various wedge lengths and vertex angles, and for different injected gases at
different values of surface temperature.

Analysis

A thin wedge having length L and small vertex half-angle a<<1 is placed at zero incidence
in a uniform hypersonic flow with speed u_,, pressure p_, density p__, temperature T__, enthalpy
h,,, Mach number M__>>1, and viscosity coefficient p_,. Local values of the velocity vector,
pressure, density, temperature, enthalpy, and viscosity coefficient are denoted, respectively, by
(u,v), p, P, T, h, and u. A power-law viscosity-temperature relation Wum=(TfP°,)‘° is assumed
for air; if a different gas is injected at the wedge surface, it also depends on the mass fraction Y, of
the blown gas.

Coordinates X and Y are measured along and normal to the free-stream direction,
respectively, with origin at the vertex of the wedge. In the absence of surface blowing, an

effective body shape is found by adding the boundary-layer displacement thickness to the location
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of the wedge surface Y~aX. At points sufficiently far from the vertex (when L is large enough)
the boundary-layer thickness O{M,,“’a'l(V“X/U,,)I/ 2}, where V=l /P, is small in
comparison with one-half the wedge thickness aX, and the pressure is nearly the same as for
inviscid flow. At points closer to the leading edge, however, this is no longer true. A reference
length X_ is defined by equating the two thicknesses, so that for X>>X the boundary layer has
only a small effect on the external flow, and the interaction is "weak,” whereas for X<<X, the
boundary-layer displacement effect is dominant, and the interaction is "strong."3'4

Nondimensional coordinates are then defined by

=, = N =M . .
X xr y o Xr o TV _fu_, 2.1

where a<<1; y=0 at the wedge surface (in the small-angle approximation); and at the shock wave
y=0(1) when x=0O(1). The ratio L/X_is proportional to the Reynolds number Re=u_L/__ based
on wedge length and free-stream quantities. For constant Mach number and an isotkermal
atmosphere, the length X increases exponentially with altitude; a weaker dependence on
temperature can be introduced by assuming a standard atmosphere. At low altitudes X might be
small in comparison with L; at sufficiently high altitudes X >>L. The stream function,
nondimensional with ap_u_X, is defined by

PU W, =PU (2.2)
with y=0 along the streamline from the vertex of the wedge.

If mass is added to the flow by surface blowing, here taken as directed normal to the
surface, the effective body thickness is increased further, and for sufficiently strong injection the
boundary layer is blown away from the surface as a free shear layer. The equivalent body now
includes the effects of both blowing and viscous diffusion. The sketches in Fig. 1 suggest the
qualitative features of the flow in the strong- and weak-interaction regions, for weak blowing
when the boundary layer is still attached and for strong blowing; in each case, the speckled region
is the viscous layer. For the "saong" blowing considered here, three thin flow layers can be
distinguished. Qualitative sketches of the mass-fraction, velocity.’ temperature, and pressure

profiles for x=0O(1) are shown in Fig. 2 for the entire region of disturbed flow between the wedge




surface and the shock wave. A tlde will be used to indicate quantities in the nearly inviscid thin
layer of blown gas; an overbar will denote variables in the viscous free shear layer where mixing
(assumed laminar) of the blown gas and free-stream gas takes place; and a caret will denote
solutions for the outer inviscid flow between the shear layer and the shock wave. Superscripts s
and w will denote strong and weak interaction, for x<<1 and x>>1, respectively. In general, the
flow variables will have different orders of magnitude in the different flow regions. The surface
temperature will be taken to have the same order of magnitude (other choices of course are
possible) as the temperature in the undisturbed air, whereas the temperature in the viscous layer is
larger by a factor O(M”Z). The mass flow in the blown layer is small because the flow velocities
are small there, and in the viscous layer the mass flow is still smaller because the density is low;
the first approximation to the pressure is a function only of x in both regions. The amount of
injected mass is chosen such that the blown-layer thickness is of the same order of magnitude as
the wedge thickness when x=0O(1). The thickness of the viscous layer is likewise of this order
when x=0(1); if, however, the mass flow is increased further, the viscous-layer thickness can be
neglected.
Inviscid Outer Flow

The location y = A(x) of the equivalent body surface, flow variables in the region between
this surface and the shock wave, and the stream function can be written as

Ax) =A(x) + A(x),  plp,=M_20?P(x,y) + ...,

PP, =ﬁ(x,y) + ., wu_=1+.., Y= \?I 2.3)
where A(x) and A(x) describe the contributions of the blown gas and the shear layer respectively.
The pressure at the displacement surface y = A(x) can be found in terms of A(x) in both the strong-
and weak-interaction limits, for suitably specified mass injection rates.

For x<<1, a self-similar solution describes strong viscous interaction. The surface of the
equivalent body and the pressure at this surface have the form
Ax) =AM+ p9xAM) =p,Ox 12+ . (2.4)

where the superscript "s" indicates "strong" interaction and pl(s) is a constant to be determined; the

required form for surface blowing is shown below. The flow in the inviscid shock layer is




described by the self-similar form of the hypersonic small-disturbance equations, with appropriate
exponents. Numerical solution of these equations, for y,_=1.4, gives a relation? between the
coefficients in Eq. (2.4):

Al(s) = 6(3)(pl(s))1/2 : B = 0.945 (2.5)
The numerical value agrees with that of Ref. 6. The representation given by Egs. (2.4) requires
that streamline slopes be small and that the pressure be small in comparison with the dynamic
pressure in the undisturbed flow. Thus the solution fails for very small x, in the "merged-layer
regime" for x=0(a4). or X=O(M°°2“’v oo/ Uoo); DOUNdary-layer approximations fail here as well, as
noted below.

If X, <<L, the strong interaction is confined to a small fraction of the wedge length.
Further downstream, for the portion of the wedge where x>>1, the boundary layer causes only
small disturbances to the outer inviscid flow. In the hypersonic smail-disturbance approximation,
the shock-wave jump conditions can be combined in the form

Vs Poo Ps " P 2

- - 1.=

Bu,  p, M. Y.+l

(1' M 12B2 ) (26)

where P is the shock-wave inclination angle, ¥, is the ratio of specific heats in the undisturbed
flow, and the subscript s indicates that a quantity is evaluated immediately downstream of the
shock wave. The flow variables for x>>1 have the form
p/pP. = szaz {(po+ 61(W)(x,y) +..}, PP =Py + -
viu,=a{l+9,Mxy) +..), B=aBy+.., M=alM,+.. 2.7
where M is the local Mach number, the subscript "0" denotes solutions for inviscid wedge flow,

and the superscript "w" refers to "weak" interaction. The values for turning through a small angle
o are given by

Y +1 (yoo+ 1 JZ 1 12 B
= + + R =
Bo=—3 { 3 a2 Po _LBO-I

1
M 22’

P
Po = YesBp * M,? =2 (2.8)

The product M_a is the usual similarity parameter of hypersonic small-disturbance theory.




For the weak-interaction region x>>1, the surface y=A(x) of the equivalent body lies very

close to the wedge surface. The body shape and the linearized boundary condition are

Axy=4,MxP+ ., Ol(w)(x,O) =nA, (WXl 4 (2.9)
where the value of n<1 depends on the choice of prescribed conditions at the surface. The shock-

wave jump conditions given by Egs. (2.6) provide a relation between the perturbations 61(“’) and

01(‘”) at the linearized shock position Y=af X or y=(B,-1)x:

2
Yoo B M (x.(By-x) = —B“’;Tl 9, Mix,(By-1)x) (2.10)

o0

0 4
Each of the functions ﬁl(‘") and '\)l(w) must satisfy a wave equation in the x, y coordinates, and the

boundary conditions require that each have a self-similar form. The solutions satisfying these

conditions are
Yoo By = € MM T 4 ¢ (x-Myy)! @2.11)

p . .
- m%olm = ¢, (x+Mgy)™ - ¢, (x-Mgy)™! (2.12)
where the constants are defined by
¢ _ S __Pgna™
C~ kl-n - (kl-n . C)Mo ’

Yoot 1
1-M,(B,-1) MBo(Bo-1) - (By- =)
k=l—M90(%°—l), c=—2070 0 41 (2.13)
+ - Y.+
0 oo
MoBo(Bo‘l) + (Bo' —4_)
The pressure at the surface of the equivalent body and the shape of the body are related by
M k! -C
Al(w) = ﬁ(w)Pl(w) =x!" B ﬁl(w)(x,()), B = of ) (2.14)

ToolPo(k! " + C)
Thus B™) depends on Y_, n, and M_ a.. The results are equivalent to those of Ref. 2.
Inviscid Blown-Gas Layer
At the wedge surface, gas is injected in a direction normal to the wall at a low Mach
number M = O(a). For the blowing rates considered here, most of the injected gas occupies a

thin layer adjacent to the surface; the flow in this blown-gas layer is nearly inviscid, and only a
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small fraction of the :njected mass is entrained in the mixing layer. In the layer of blown gas the
scalings for the flow variables are essentially the same as suggested by Cole and Aroesty,? and are
found from the boundary and matching conditions, thermodynamic relations, and the conservation

laws to have the form

P =M B0 + . plp =M PO By 4., TM =Ty +..  @15)
12 12
whi = o [ PGy + s v, = e[ Sy + 2.16)

where ¥, and v, are the ratios of specific heats for the blown gas and for the undisturbed stream,
respectively, and o, is the ratio of the molecular weight of the blown gas to that of air. The

pressure is a function of x in the first approximation since the layer is thin and the gas velocity is

low. The stream function ¥ is then

(o 172
5 = Mo (*:Zh] ¥ 2.17)

1 2. T T = (B s _=z
Vg =5 lie— =2 5=(R)h5 53T (2.18)
pu Yol Yl w

where the subscript w indicates conditions at the wall. This is the set of equations studied by Cole
and Aroesty.8 The wall values Py Vi 'T‘w, and p,, are understood to be functions of ¥ and can
be expressed instead in terms of a coordinate x,, that identifies the location at which a streamline
I=aves the surface. Thus
Py = P(xy,.0), vV, = V(x.0), P, =P(x,) (2.19)
where x_ () is defined by
dy=-mdx,, m=p v, (2.20)

and m is the scaled nondimensional mass flow of injected gas per unit area. The Mach number of

the injected gas is also expressed as a function of x ;;

M, =oM,(x,) 2.21)
From Egs. (2.18) and (2.20), the streamline equation can be written as
Y-1W2 -~ /5 VvV 5 Yy D/, -172
dy =- (-%—) M |2 7"{1 (B "} dx,, (2.22)
Py Py
11




The contribution Z(x) to the shape of the equivalent body is found by integration over X,

,ata
given x, from a point on the surface up to the zero streamline:
~ 047 X
A= 5L =-f Si-dx,, (2.23)
Vo pu ] w

where Y=y, (x), the stream function at the wall, is the inverse of x=x_(¥). The choice M, =
O(a) gives A=O(1); i. ¢., for this choice the thickness of the blown-gas layer is of the same order
of magnitude as the wedge thickness when x=0(1).

The average mass flow per unit area equals the integral of PwVyw divided by the length L.
If p,V,, is proportional to a power of x, the scaled mass flow t can then be written in terms of a

scaled average iﬁavg, which is proportional to the integrated dimensional mass flow m per unit

span:
~ o~ ﬁ -J o e ~ )_([uxr...
m= avg(L) (1) xV, M= 1 J m(x) dx
. OpYy 12
m=p_u_LM_o (ﬂ) B0 (2.24)
Yoo

The mass flow m is taken to have the same form for all x. In the strong-interaction region, for
x<<l1, self-similarity requires that the pressure and the blowing Mach number have the form

B =p,Ox17, M, =M x4 (2.25)
These conditions can be achieved, for example, if either the wall density Ew or the wall
temperature ’T‘w is constant, with the other of these quantities following a power-law variation

found from the equation of state. In the weak-interaction region, the scaled pressure and the

blowing Mach number are

~

p=py+p, MM+, M, =M, ™ xJi+.. (2.26)
It is then found from Eq. (2.22) that the contributions of the blown-gas layer to equivalent body

shapes for the strong- and weak-interaction regions are, respectively,

A =X O3, A,® =M, © (2.27)

AW =F 0 <BW8, A< 13<W>(p(,/pl(“">)1f2ﬁwl(‘"> (2.28)
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and the exponents j, n are related by n=(3-2j)/3.
If the wall temperature "f'w is specified to be constant, the density P, and velocity v, atthe
surface are O(x"12) and O(x"1/4), respectively, for x<<l. The exponent j appearing in m =

-3/4

7 wﬁ/‘fw is 3/4, and the injected mass flux is proportional to x™*. The coefficient for the blowing

Mach number in Eq. (2.25) is

- Tl L3/
@y = =
M, s By (xr) (2.29)

Substitution in Eq. (2.27) then provides a relation between p, and A,®),  Integration of Eq.
(2.22) gives the constant D for the streamline shape in the strong-interaction region as

1
21,2 T (53 1/ (D)

B = (2n(y,- 1)
" @ r(3ien)

(2.30)

In the weak-interaction region, again for constant wall temperature, the density and the coefficient

in the blowing Mach number are

T 12 3/4 :
= _Po G W__w = (L
Pu="2* s M., 4 mm(xr) (2.31)

w

Since pressure changes are small for x>>1, the Mach number remains small throughout the blown-
gas layer, and the streamline shape is found from the incompressible form of Eq. (2.22).
Integration then gives the constant D™ in Eq. (2.28) for the thickness of this layer:

Y, n . ~
dy =- —}33‘1— M_dx_, D™ =202y,)12 (2.32)
If instead the surface density P, is taken to be constant, !0 the exponent in = P Yy is j=1/2 and
-12

the mass flux is proportional to x It is shown in Ref. 10 that the expressions obtained for

D® and D™ are the same as those given by Egs. (2.30) and (2.32).

Viscous Shear Layer

In the high-temperature separated free-shear layer, the velocity and the thermodynamic
variables have the form
wu_=u(x,y)+.., pp,= M”2a2 px)+.., plp,= ol p(x,¥) + ...,
TT_=M_T(x,9)+... Wh, =M_Zh(x,§) + .. (2.33)

where the stream function and the streamline equation are

13




w=a2\T’9 y‘7=

2=

If the shear layer is treated as a binary mixture of ideal gases, the equation of state is

= _ =D -1

(2.34)

(2.35)

where Y, is the mass fraction of blown gas and 1-Y) is the mass fraction of air; real-gas effects

will be considered later. With each constituent modeled by the same "point-center-of-repulsion”

potential-energy function, the transport coefficients for mass, momentum, and heat are all

proportional to T9 12 For a chemically inert mixture with negligible thermal diffusion, the

concentration, momentum, and energy equations are then (e. g., Ref. 13)

1 =6 e
be =3c KpI®pi wa)‘7

Tt = TPy,
e T, - 18 YK, Topun;]
p
+ (Y:’;)Pr X,T p‘)ﬁ-“-,)‘? + 5 KDT"’(apb- Ep“)pquwT‘“_’
The specific heats appearing in (2.38) are y
€ =T Yyt 5 1Yy, T, 3;2;:—'!2 . T = _izl_

(2.36)

(2.37)

(2.38)

(2.39)

where Ep has been made nondimensional with the gas constant for undisturbed air, and the

(dimensional) species specific heats cpb and < have been assumed independent of temperature.
o0

The Prandtl number Pr and Schmidt number Sc are defined by Px:cp H_/A_and Sc=u_/(p_D_),

where A is the thermal conductivity and D__ is the self-diffusion coefficient, for undisturbed air.

The proportionality factors in the diffusion coefficients are given by14

-1 172
k=L, o2
12
l-Yb O Yb

= +
u l-Yb+GYb Yb+G°b3/2(1-Yb)
-12
1-Yh E& Oy, JYb

K, = +
AT - Yb+GYb Eu_ Yb +G°.b3/2( 1 -Yb)

14

(2.40)

(2.41)

(2.42)




where J=1 or J=(E1u,,‘,)'l for an injected diatomic or monatomic gas, respectively. The Eucken
correction Eu is approximated!’ by Eu, ,=0.115 +0.354 €, .. With the specific heat of air

assumed constant, Eu,=Eu,_; otherwise c_ is the specific heat of air evaluated at the local

Pa
temperature.
If the pressure is proportional to a power of x, the equations have self-similar solutions and

can be reduced to ordinary differential equations. The prcssurc p and the similarity variable { are

p=px¥l+., f=— /zan (2.43)

For strong interaction q=1/2, in agreement with Eq. (2.4) for the shock layer and Eq. (2.25) for
the blown layer, and p 1=pl(s); for weak interaction the pressure is nearly constant, and so g=1 and
P;=py- Now @, 'T:, and Y, are functions only of {. The differential equations, Egs. (2.36)-
(2.38), become

%qu '=-§IC-(KDR'1‘1""‘1ﬁY ") (2.44)
C" w1RT - (K R° 1T 15w) (2.45)
Y, U
c q-lpo= 1501552
2—9- qCT + " RT -K R T '

RITO- 5T -—-K R-ITe-1 -T )Y, T 2.46
Fl)_Pr(K)‘ ) y,,Sc u(' c ) (2.46)

Numerical integration of these equations is carried out for § y <{<ee, where { g<Oand g Jzlplmv(“/2
is the (scaled) amount of mass entrained in the part of the shear layer below the zero streamline.
The boundary conditions as {—ee require thatv—1, T-0, and Y, —0, and as {0 it is required
that =0, T—=0, and Y, —1; moreover, the asymptotic form as {—  is known, and the solutions
for @ and T must approach zero in the proper way. The computational scheme is a continuation
method in which the value of { at the lower boundary is taken to be a small negative nmber that is
gradually increased in magnitude until the correct asymptotic behavior is achieved.!! Since the
numerical scheme in Ref. 11 does not appear to converge for q=1, the weak-interaction solutions
are found by linear extrapolation from solutions computed for q close to 1 (e. g., g=0.98 and

0.99).
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The streamline equation is found from Eq. (2.34) as

ye=py o VRT (2.47)

For strong and weak interaction, respectively, the shear-layer thicknesses are
B9 =K, Ox¥+ A, = (p,) 25O (2.48)
AWy =3, + .., & W=p 5™ (2.49)

where D® and D™ are numbers found by integrating the appropriate solutions for RT/3 from 8o
toe. These integrals exist since T —0 sufficiently rapidly as {— oo, as can be seen by deriving
the asymptotic form for T. For strong interaction aA®(x)=0(ax>4), and the shear-layer
thickness remains small in comparison with x when x>>at i e., as anticipated, the boundary-
layer approximation fails in the merged-layer régime x=0(a*).

The analysis may be extended to include real-gas effects which occur at high temperatures.
For air, the specific heats begin to vary when T2600 K, and O, begins to dissociate when
T22000-2500 K, for p~0.01-1 atm. Self-similar solutions may still be computed when the gas is
chemically reactive provided the pressure is nearly constant, as in the weak-interaction region, and
chemical equilibrium will be closely approached sufficiently far downstream.

To provide a measure of the extent by which the ideal-gas results will change, the analysis
of the weak-interaction region is repeated for the case of air injection, with air treated as a real gas
in chemical equilibrium. Following Hansen's analysis.16 it is assumed that, for a given pressure,
the peak temperature remains low enough that, to a good approximation, only the dissociation of
oxygen occurs. (For pressures of the order of 0.1 atm, this assumption limits the temperature to
values below approximately 4000 K; the limit increases with increasing pressure.) Air is then
composed of N,, O,, and O, with the mass fraction of O given by Y, = 2(16/29)€, where 16/29 is
the approximate ratio of the molecular mass of O to that of undissociated air. The fraction € of

molecules which dissociate into oxygen atoms may be written 19

€ = (0.8 +[0.64 + 0.8(1+4p/Kyp D)2} / (1+4p/Kp2) (2.50)
The equilibrium constant Ky, for %02 2 O is given to within 4% of the values listed in Ref. 17 over

the temperature range 1500-4000 K (with sz and p expressed in atmospheres) by
Kp=40.68 T exp(-29685/T) 2.51)
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where T is expressed in degrees Kelvin; the quantity 29685 is, in degrees Kelvin, the formarion
enthalpy of O at absolute zero divided by the universal gas constant. With R=1+€, the equation of
state remains as written in Eq. (2.35),16 and the scaled enthalpy h is approximately related to the

temperature by

H=T‘(l 2 3390/T + 4 € 2&) 2.52)

TT exp3390T) -1 70 T
where the sensible enthalpy of O, has been equated with that of N,, and sensible enthalpies in the
term proportional to € have been neglected in comparison with the formation enthalpy of O. Since
only air injection is considered, the species conservation equation (2.44) may be dropped. If
dissociated air is approximated as a binary mixture of “air molecules” and O atoms in cvaluating
the viscous fluxes, then treatment of the transport properties as before leaves the momentum
equation (with q = 1) unchanged, and the energy equation may be written more conveniently in the
form

LR = 0K TR + 5K, + Kyp TR T ) @53

The proportionality factor K, p for energy transfer by mass diffusion is given by

Yy -1
Pr 29685( 2 (1/2 + 29685/T) ) 2.54)

K. ==K
AD™ y_Sc™D T (1/e +0.5/(0.2-€) - 0.5/(1+€ )

where sensible enthalpies have been neglected, and the term in brackets (similar to Hansen’s!6 Eq.
(43a)) is proportional to TdY,/dT. The quantity KM is taken to be unity (considering the current
level of approximation), and K,, Ky are given by Egs. (2.40), (2.42), respectively, with
0,=16/29, Y, =Y, and J=1; the Eucken correction Eu, for “air molecules” is evaluated with Cp, =

7/2 + {3390/(2’[')}/sinh2{3390/(2'1')}, the nondimensional specific heat of Nz.16 The boundary

conditions remain the same as before, and Egs. (2.45), (2.53) are solved following the same

numerical procedure as described above; the pressure-gradient term, -{(y“-l)/y“}(q-l)R'T', is

added to the left hand side of Eq. (2.53) for computational purposes, with q approaching 1.
Unlike the ideal-gas case, the free-stream conditions and wedge angle must be specified before
computing a solution since real-gas behavior is exp'licitly dependent on dimensional temperature

and pressure.
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Results

The location of a streamline in the shock layer can be expressed by writing the integral of

the streamline equation in three parts:
0-2‘72 a2¢u ‘v
d d
y=pu, fdl vpu, | owpu, [ 3.1
pu pu pu
Yw az‘?ﬂ az\iu

where u becomes small as { decreases toward ¥ ; \vw=0(M~a2) is the value of y at the wall; and
Vy, is still arbitrary. Then

b\Tln/M” \I‘u ‘3 A
y = f%\%*- Y jd,\ G.2)
pu pu Al
¥, ! Yy

where b=(0,Y,/,.) /2. For a<<! and ,>>1 such that a’,_<<1, the first integral approaches
A(x) as defined by Eq. (2.23); the second integral approaches a finite value A(x) since J—roo
rapidly enough as {y—»e; and the third integral approaches zero if also W Then the left-hand
side approaches the equivalent body shape y=A(x), and so Eq. (3.2) approaches the first of Egs.
(2.3). For strong and weak interaction respectively, the coefficients in the equivalent body
shapes defined by Eqs. (2.4) and (2.9) include contributions from both the thin layer of blown
gas and the viscous free shear layer:

AI(S) = ZI(S) + ZI(S) , AI(W) = ZI(W) + ZI(W) (3.3)
The pressures are found in terms of these quantities from Eqgs. (2.5), (2.27), and (2.48) for strong
interaction, and from Egs. (2.14), (2.28), and (2.49) for weak interaction. As indicated by the
notation, the pressures in the blown-gas layer and the viscous layer are equal to the pressure in the
outer inviscid flow evaluated at y=A(x) if x<<I and at y=0 if x>>1.

The constants D and B™ introduced in Egs. (2.5) and (2.14) are given in Table 1 for
Y..=1.4 and, in the case of 6(“’), for n=1/2 ( T‘w=constant) or n=2/3 (ﬁwzconstant) and a
representative value M_a=1. The constants D® and D™ defined for the blown-gas layer in Eqgs.
(2.27) and (2.28) are functions only of Yy the values for yb=7/5 and yb=5/3 found from the

solutions in Eqgs. (2.30) and (2.32) are shown in Table 2. Some ideal-gas results for the viscous




shear layer are listed in Table 3 for injected gases having a wide range of molecular weights. The
constants D® and D™ defined in Egs. (2.48) and (2.49) are shown, along with the lower limit Gy
for the similarity variable in both the strong- and weak-interaction solutions. The scaled maximum
temperature Tmax is seen to be a small number in each case; to find the actual maximum
temperature in the shear layer, the value of T‘max is to be multiplied by M,,zT”. For example,
with air injection the maximum in the strong-interaction region is about 0.03M°°2’I‘°°, implying
that significant levels of O, dissociation (which, as noted earlier, begin when the local temperature
is about 2000-2500 K for p20.01-1 atm) will not occur untl M_215-17 if T_ =300 K; for helium
injection, cooling of the viscous layer increases this Mach number to M_226-29. The ideal-gas
results are understood to be applicable when the Mach number is low enough (or the shear layer
thin enough) that dissociation effects are not appreciable. A comparison between the ideal- and
real-gas results for the shear ﬁyer is presented in Table 4 for the case of air injection on a &degﬁe
wedge at an altitude of 30 km with M__=15 or 20. It may be seen that the real-gas analysis yields
values for the maximum temperature T . that are lower than the ideal-gas values, as wouid be
expected; the values of D™, which is proportional to the layer thickness, are likewise reduced.
For the conditions considered, however, real-gas effects do not greatly alter the values of D™ and
§,: for example, there is only a 5% decrease in D™ when M, =20. The differences would of
course be greater if higher Mach numbers and temperatures had been considered.
If the density of the gas at the wall is constant, the pressures are found, using the definitions

of M, and fi']av g in an explicit form equivalent to the results of Ref. 10:
D& DO 12
©.09,09 1o (L 34
P Bis) B(S) zﬁwlﬂ avg er) (3.4)

bW 1_,L\A
Pl(W)= (EB(W) mavgf] -p-wl/3 (}Tr) 3.3)

In this case the viscous shear layer for x>>1 has thickness O(x2) that is of higher order than the
blown-layer thickness, which is O(le 3), and so the shear layer does not affect the first
approximation for the pressure. If instead the temperature of the gas at the wall is constant, the

thicknesses of the viscous and blown layers are of the same order of magnitude for weak

19




interaction as well as for strong interaction. Now the pressures are obtained from solution of the

cubic equation
(P12)3. 3(Plﬂ) -2Q=0 (3.6)
where P and Q are defined for strong interaction by
56 56 T, 12 3/4 5
p.@=1 1D DY ‘w ___
P3P g (X)) T 2(‘5(? Q- G-D
and for weak interaction by
5®) 5 T 12 34 5™ B2
0 )2 1 D D w (L. _( D 9
= (3.8)
P 1/2 F p01/2 w4 (xr) avg 3p01/2 W)
The relevant root of the cubic equation is found from
Qsl: PY2=2cos¢, cos30=Q, 0sosr/2 (3.9)

Q21: ' P2 =2coshy, cosh3x=Q (3.10)
It is seen that P=3 when Q=0 and that P increases monotonically as Q increases. For Q
sufficiently large (216 for less than 10% fractional error), P-(2Q)2/3. This may be regarded as an
inviscid-flow limit, since Q is proportional to (I../Xr)3/“ﬂiavg and L/X_ is proportional to the
Reynolds number Re=u_L/v_; thus, for fixed values of the other parameters, large Q implies that

Re and/or the blowing rate m___ are large, and that the viscous-layer thickness may therefore be

avg
neglected.

The pressures for x>>1 and x<<1 have the forms given by Eqs. (2.25) and (2.26)
respectively. Because of self-similarity, these require solving only ordinary differential equations,
whereas a solution for x=0(1) would be much more difficult to obtain and is not attempted here.
Instead, since the numerical values of pl(s) and pl(“’) are not greatly different, interpolation
between the strong- and weak-interaction results would be expected to provide an approximate

representation that is fairly accurate. The interpolation formula chosen is

B - pp = 100p, Ox V2 + (1-1x))p, W (3.11)

1

_— A =cosh’12 3.12
cosh(Axm) ( )

For x<«1, r(x)=1 and Eq. (2.25) for strong interaction is recovered; for x>>1, r(x)=0 and Eq.
(2.26) for weak interaction is recovered; and A is defined such that r(x)=1/2 when x=1. (The
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definition of r(x) differs slightly from that in Ref. 10.) The interpolated pressure is shown by the
solid curves in Fig. 3 for air injection at three different blowing rates with T =constant. The
differences from the asymptotic solutions derived for x>>1 and x<<1 are seen to remain small,
even if the asymptotic solutions are used (incorrectly) at x=1.

The increase AF in the (dimensional) normal force above the inviscid-flow value is found

-

by integration of Eq. (3.11):

AF X 1 ,L\"
a2 T 2 () ] - a3
Lp =%tan"[sinh(A(L/X,)"2)} (3.14)
(L/Xr)llz
2n-1
.In = I ) sech(As) ds .15
0

where n=2/3 if p_, is constant and n=1/2 if 'T‘w is constant.

When the blowing rate is sufficiently large, for given values of the other parameters, the
viscous-layer thickness is small relative to the total displacement thickness and can be neglected in
a first approximation. The displacement effect is then caused entirely by the layer of blown gas,
and is described by the inviscid-flow model of Cole and Aroesty.8 The approach to this limiting
case is illustrated in Fig. 4a, where the scaled total displacement thickness Al(s), scaled blown-
layer thickness Zl(s), and the ratio of viscous-layer to total displacement thickness Zl(s)/Al(s) are
plotted against the scaled blowing rate ﬁaavgaJXr)3/4'T'w 12 for air injection at constant wall
temperature. As the blowing rate increases, it is seen that Zl(s)/Al(s) decreases, falling to less than
10% for r'ﬁavgﬂJXr)3/4’T‘wlﬂZ7.2. The domain of parameter values for which the flow is nearly
inviscid may be defined arbitrarily as that for which the force change AF, = computed neglecting
the shear layer underestimates AF by less than, say, 10%, where again the force change is
measured relative to the force on a thin wedge in inviscid flow. This arbitrary choice is illustrated

T, !72) versus log(L/X ) for AF, =0.9AF, with M_a=1.

in Fig. 4b by plots of log(fﬁangw

It should also be noted in Fig. 4a that the solutions do not remain valid if

~

m g(I../Xl,):‘/“"f'w 122 i5 taken to be too small. It is assumed in the present theory that the blowing

av

rate is large enough to generate an inviscid blown layer with a thickness at least of the same order
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of magnitude as that of the viscous free shear layer, a condition that is not met if
x‘ﬁavg(uxl)y"‘f"m—)o. (A somewhat weaker assumption can be shown to suffice, namely that
the amount of injected mass is large in comparison with the mass in the viscous layer.) In Fig. 4b
the dashed curwes, for both strong and weak interaction, indicate the case where the thicknesses of
the viscous layer and the blown layer are exactly the same, to give a qualitative sense of the range
in which the theory is applicable. For tne results presented below, the blowing rate has been
chosen arbitrarily to be large enough that A®>AG); for air injection this implies
ff,, /X T, 12 20,34,

In Fig. §, the scaled change in force AF(L/X‘,)m/(anazp“L) is plotted versus the scaled
total mass-flow rate m(T /T ”)1'2(1./Xr)3/4/(M~a3p_u“L) for various cases, all with constant wall
temperature. Two limiting cases are shown for air as the injectant. For L/X —0, the strong-
interaction limit, the viscous-layer thickness is so large compared to the wedge thickness that the
magnitude of M_a is irrelevant, and the force change depends on p,). For L/X —roe and cither
M_a—0or M_a— e, the force change depends on pl(“’); the larger force change is found for
M_a—se and the smaller for M_a—0, as might be expected since for M_a—0 the wedge
thickness tends to zero in comparison with the total thickness of the region of disturbed flow
between the wedge surface and the shock wave.

Also shown in Fig. 5 is a comparison between air and helium as injectants, for L/X =1 and
M_a=1, again for ’T‘w=consmnt. As in the inviscid-flow case considered by Cole and Aroesty,® it
is seen that strong blowing of a gas lighter than air, in this case helium, yields higher induced
surface pressures and thus larger force changes for a fixed mass flow than when air (or a gas
heavier than air) is the injectant. Interestingly, this trend appears to become reversed when the
strength of the blowing decreases. Introduction of a light gas increases the specific heat for the
mixture and thus cools the viscous layer, as indicated by the maximum temperatures listed in Table
3. The average density is therefore increased and the transport coefficients are decreased. As a
result the thickness of the viscous layer is reduced and thus the force changes are also reduced.

The curves for air and helium in Fig. 5 would therefore be expected to cross if they were extended

to smaller values of mass flow.
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To establish numerical orders of magnitude for the change in force and the associated
mass-flow rate of the injected gas, dimensional values of AF and m for T,,=constant have been
computed for a range of parameter values and for various injectants, using the properties of the
standard atmosphere. The solutions depend on several parameters which may be divided
conveniently into three groups. Parameters related to flight régime are M__ and altitude z; those
characterizing wedge geometry are a and L; and those representing properties of the injected mass
are m, T, O and Yo (The solutions also depend on , the exponent in the viscosity law, taken
here as 3/4.) Air injection on a wedge having length L=3 m and half-angle a=6 deg, for M_=15
and z=30 km, is selected as a baseline case and is indicated by the solid line in each part of Fig. 6,
where M__ and z (Fig. 6a), « and L (Fig. 6b), and injectant type (Fig. 6¢) have been varied.
Note that large changes in fqrce per unit span of order 1000 N/m (68.5 1b/ft) are achieved with
seemingly moderate injection rates per unit span of order 0.1 kg/m-sec (0.067 Ibm/ft-sec).

In. Fig. 6a, it is seen that, for given injectant rates, the force changes increase with flight
Mach number at a given altitude and decrease with increasing altitude at a given flight Mach
number, as expected. Also presented is a comparison between the ideal-gas and real-gas results
for Mach 15 and 20, where differences between the solutions are seen to be small. (Since the real-
gas analysis was for weak interaction only, the real-gas curves were computed using the ideal-gas
results for the strong-interaction region, which extends over a negligibly small portion of the
wedge for the conditions considered.) As shown in Fig. 6b, at a given flight Mach number and
altitude, the force changes increase with wedge angle for a given length and increase with length
for a given wedge angle. Finally, in Fig. 6c¢, it is shown that the force change increases with
decreasing molecular weight of the injected gas, at higher injectant mass-flow rates. At lower
injection rates the opposite effect occurs and the crossover of the curves anticipated above is seen
for argon, air, and neon. It is also observed that the crossover occurs at lower injectant rates as
the molecular weight of the injectant decreases. For all the calculations in Fig. 6 the wall
temperature T is constant.

If a simple isothermal model for the atmosphere is adopted and the weak dependence on %

is neglected, then the force change for injection with completely inviscid flow over a wedge with
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predominantly strong or weak interaction (for M_—e), and constant wall temperature, may be
written in the form
AF = const. (M_2 e /ML m? T, /o, )13 (3.16)
where H is the atmospheric scale height. This simple expression shows the trends indicated in
Fig. 6, although not the proper quantitative values. For a fixed mass rate of injected flow it is
seen that AF increases with increasing M“Zc'zm, a factor proportional to free-stream dynamic
pressure, and also increases as the wedge length L increases; the dependence on L implies that it
would be most efficient to distribute a given amount of blown mass over a large surface area.
Increasing the ratio of the injectant temperature T, to its molecular mass will cause greater
displacement of the outer flow and thereby also increase the force change. The dependence on
wedge angle o, not present in the above expression, is seen in Fig. 6b to be small for the
conditions considered there.
Conclusions
From the results of this analysis, it is concluded that relatively large pressure forces can be
achieved with relatively small amounts of gas injected at the surface of a vehicle traveling at
hypersonic speeds. Hence it appears that boundary-layer blowing is a possible alternative to the
use of moveable surfaces and/or vectored thrust for control of such a vehicle in the atmosphere,
and should be investigated further. Although only the very simple case of two-dimensional
wedge flow with a power-law distribution of injected mass is considered in this study, the
magnitudes of the surface forces found for relatively small mass-flow rates of the blown gas
indicate that it is worthwhile to analyze more complex blowing patterns with various injectant
gases, in order to obtain desired force distributions, and finally to consider more complex

geometries. A numerical code presently under development will be used to accomplish the first of

the above extensions to this work.
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Table 1 Shock-Layer Data Table 2 Data for Blown-Gas Layer 3
~a b ~
Case H® pw2a Y B® pwe o
T, =const” 0945  0.567 S 3.501 3347
p,, = const.® " 0.4150 513 3.604 3.651
-+t - 3 3+ 3+ 3 > 3+ ] .
3 Bq. (2.14) with M_a=1, ®n=1/2, ®n=2/3 ?Either T, or p,, const., "Eq. (2.30), °Eq. (2.32)
Table 3 Sheay-Layer Data®
Strong Interaction (q = 1/2) Weak Interaction (q = 1) L4
Inj % S
Be) T D) T
B € ] Trnax D 'Cn Tnax
H, 7/5 0.0690 0.1103 0.9623 0.0047 0.1259 0.6107 0.0079 @
He 5/3 0.1379 0.1796 1.4262 0.0098 0.2157 0.8101 0.0168
Ne 573 0.6897 0.3515 3.2133 0.0258 0.4384 1.6391 0.0437
Air 7/5 1.0000 0.3669 3.8154 0.0280 0.4331 19665 0.0447
Ar 5/3 1.3793 0.4604 45670 0.0356 0.5896 2.1818 0.0594
@

S T e -+ T+ + 1+ + -+ + -+ + 3+ + ]
T T R R S S L N N N R L o R R R S S R R e e e o e o . s E8 e . e e e . i, S0, o, e

y_ =14, =075 Pr=072,Sc =0.74




Table 4 Comparison Between Ideal- and Real-Gas Results for Shear Layz-.ra

e D S T R S == =——= =
Ideal Real
M”
D™ g, T, [KI D™ Ly T [K]
150 04331 1.9665 2.326 0.4099 19825 2082
20° " " 4,135 04131 19949 3662

——t——t 3+t 3 S+

3y =14, ©=0.75, Pr=0.72, Sc=0.74, a=6deg, z=30 km (T _=231.2K, p_=0.1174 atm)
®M_2T_=52,020K, p=0.07131 am, °M_2T_=92,480K, p=0.10991 atm
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Figure Captions

Fig. 1 Qualitative sketch of wedge flow field with weak or strong blowing and weak or

strong interaction. (Speckled regions are viscous layers.)

Fig. 2 Qualitative profiles of blown-gas mass fraction Y, velocity component u, temperature

T, and pressure p.

Fig. 3 Surface pressure f)'-po vs. x for various rates of air injection.

Fig. 4a Strong-interaction solutions for scaled total displacement thickness Al(s), thickness
A l(s) of blown-gas layer , and -the ratio of shear-layer to total displacement thickness Zl(s)/Al(s)

vs. blowing-rate parameter m,, ;I"wm(L/Xr)y * for air injection with constant wall temperature.

Fig. 4b Parameter ranges where flow may be treated as inviscid and where present theory

does not apply.

Fig. § Scaled force-change AF(L/Xr)l/z/(szazpcoL) vs. scaled mass flow-rate
m(T,/T,.) 1/2(1./Xr)3/4/(M°°a3p°°umL) for various cases.

Fig. 6a AF vs. m for various flight regimes.
Fig. 6b AF vs. m for various wedge geometries.

Fig. 6¢c AF vs. m for various injectants.
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Euler Computations of Hypersonic Flow
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Nelson Carter *
Bram van Leer !

The University of Michigan
Department of Aerospace Engineering
Ann Arbor, MI 48109-2146

Abstract

A validation study is presented for a numerical code
which calculates a two-dimensional steady-state solu-
tion for inviscid hypersonic flows in the presence of
strong surface blowing. A higher-order Godunov-type
finite-volume approach is used to discretize the inviscid
Euler equations. Interface values of the state quanti-
ties are reconstructed using a monotone interpolation
technique suggested by Koren, based on Van Leer’s
kappa scheme. The interface fluxes are computed using

»e’s upwind-biased flux-difference splitting technique.
The time-differencing algorithms used are a locally im-
plicit, linearized Gauss-Seidel iteration scheme and an
explicit multi-stage scheme with optimized short-wave
damping. The results of the numerical calculations are
compared with analytical solutions obtained for strong
blowing along a flat plate and a wedge with an inverse-
square-root injection-velocity distribution.

Introduction

The recent revival of interest in hypersonic vehicles has
renewed interest in the study of hypersonic flow. One
subject of study is the use of surface blowing to influ-
ence an external hypersonic flow field. Understanding
of the interaction between the injected gas and the high-
speed outer flow is critical to applications of blowing in
propulsion, surface cooling, and control-force genera-
tion. Experiments in hypersonic flows, however, are
difficult to perform; thus a heavy reliance on computa-
tional predictions has resulted. In the absence of ex-
perimental resuits, the only recourse is to validate the
computational codes on the basis of flow cases for which
analytical solutions exist. This can help to distinguish
between physical and numerical effects in cases where
only numerical results are available.

A generic problem is that of hypersonic flow over a

*Graduate Research Student, Member AIAA
!Professor, Member AIAA

flat plate with distributed blowing off the surface. The
displacement effect of the blowing causes a shock wave
to form ahead of the blowing region. If the blowing is of
sufficient strength, the boundary layer is blown off; this
is called “strong blowing”. It results in a viscous free
shear layer separating an essentially inviscid rotational
blown layer next to the wall from an inviscid shock layer
extending from the shear layer to the shock (Figure 1).
For sufficiently high Reynolds numbers, the free shear
layer can be assumed to have negligible thickness and
be regarded as a slip-stream. This fully inviscid limit-
ing case was considered two decades ago by Cole and
Aroesty [1], and by Wallace and Kemp [2]. Recently,
Messiter and Matarrese [3] have obtained similarity so-
lutions that take into account the viscous interaction
for an inverse-square-root distribution of the injection
velocity along a flat plate and along a thin wedge, in
two dimensions.

The present paper is a validation study for an Euler
code for hypersonic flow with surface blowing developed
by the authors. Numerical solutions obtained with a
discretization of the Euler equations are compared with
analytical solutions for the inviscid strong-blowing case.
The numerical method used is a finite-volume technique
for finding steady solutions to the two-dimensional Eu-
ler equations with boundary conditions consistent with
the assumptions made in the analytical wotk. Com-
parisons for blowing off a flat plate and a wedge are
presented.

Summary of Analytical Work

In the inviscid case to be considered, the flow field over
a flat plate or a wedge in the presence of strong blowing
can be separated into two different layers:

1. The blown layer next to the wall, made up of the
injected gas.

2. The shock layer between the blown layér and the
shock, made up of free-stream gas that has passed
through the shock.
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Figure 1: Schematic of the various layers present for strong blowing off a flat plate.
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Figure 2: Schematic showing the inviscid case. The inviscid blown layer and the inviscid shock layer meet in a
slip-stream along the separation streamline.




The two layers meet in a slip-stream along the sep-
arating streamline (Figure 2). Flow in these layers
can be characterized by three different regions along
the plate or wedge. Far enough downstream, the rel-
ative pressure changes are small, and the interaction
between the blown layer and the shock is described
as weak (weak-interaction region). Further upstream,
the curvature of the shock increases, and the relative
pressure changes become large; here the interaction be-
tween the blown layer and shock is described as strong
(strong-interaction region). Still further upstream, the
thickness of the shock layer, blown layer, and free shear
layer (whose thickness has been considered negligible
up to this point) all become of the same order and no
real distinction between them can be made. This re-
gion is referred to as the merged-layer regime. Similar
flow classifications have been defined for viscous hyper-
sonic flow in the absence of blowing and are discussed
in books by Hayes and Probstein [4] and by Stewartson
{5].

In the strong-interaction region, the flow in the shock
layer is described by hypersonic small-disturbance the-
ory. The flow in the blown layer is compressible, and
is described by the so-called “inviscid boundary-layer
equations”. For flow on a flat plate, the results of Cole
and Aroesty [1] a.d Messiter and Matarrese [3] may
be used to show that an inverse square-root injection
velocity distribution of the form

2
o _ 030222z,
Uoo Plw
for ¥ = 1.4, results in a separating streamline of the
shape
3
Yss = 0279,

the corresponding pressure distribution along the plate
is
Pw

P

Here § << 1 is the blown-layer thickness at z = 1, and
P1w 18 the ratio of the blown-gas density to the free-
stream density, assumed to be constant with a magni-
tude of O(1). The coordinates r and y and thickness
6 are non-dimensionalized with respect to the length of
the plate. The strong-interaction results are appropri-
ate for regions in which the parameter M2 62 is large
(— o0).

In the weak-interaction region, pressure changes are
small and linearized supersonic flow theory can be ap-

1.119M2 6%z %,

plied. The pressure perturbations (L;iﬂ) are propor-

tional to the local slope of the effective body created by
the blown layer (y,,). The flow inside the blown layer
is assumed incompressible. Again, for a flat plate with
an inverse square-root blowing distribution of the form

v _ 8 -t
L_,‘;—:;AM(Mooplw) z” 3,

(1] and [3] show that the resulting separating streamline
has the form
a
Yos = 623,

the pressure distribution along the plate is

Pv _ 14 -2-7M°°6z‘§.
Poo 3

These results are valid in regions where the parameters
Yss and M, are such that

z
Yss << Mo

i.e., the thickness of the blown layer (y,,) is small in
comparison with the thickness of the shock layer, so
that linearized supersonic flow theory is applicable.

These results have been extended in (1] and (3] to
blowing along a slender wedge in hypersonic flow. In
the strong- interaction region, the solution is the same
as that for a flat plate since the wedge thickness is as-
sumed to be small in comparison with the blown-layer
thickness in this region. This requires that y,, >> za,
where a is the wedge half-angle.

The solution for the weak-interaction region is differ-
ent for wedge flow. For the case of an inverse square-
root injection velocity distribution of the form

s \4
v_'”— 2% —_— -4
o Pl (1.7601) =5

the separating streamline retains its shape, i.e.,
Yis = 63*;

but the pressure along the wedge becomes

}% = M2 a2 (ﬁ"2—+i)+2.0541 gz-% +) .
The key parameter in this region is the ratio of the
blown-layer thickness § to the wedge half-angle a. This
ratio is assumed to be small. Also, as for the flat plate,
the thickness of the blown layer is assumed to be small
in comparison with the thickness of the shock layer.

Numerical Strategy

A higher-order Godunov-type [6] finite-volume ap-
proach was used to discretize the inviscid Euler equa-
tions. This requires a spacial interpolation routine,
a numerical flux function, and a time-marching tech-
nique.

o State quantities in cell centers were interpolated at
cell interfaces using a formula introduced by Van
Leer [7][8]:

1+«

Grds = Gi + 7 (G = )

l1-«
+ T(Qu - qi-15)-




This type of interpolation is at most second order
accurate (for xk = }), and may lead to spurious
oscilations in the solution in the neighborhood of
flow discontinuities. To avoid this while maintain-
ing the high order of acturacy in smooth flow re-
gions, a limiter may be employed (Sweby [9]); the
limiter adopted was one introduced by Koren [10)
which is consistent with x = 4. It has the form

_ 1 2R*+R
Urys =Gt o R g (B T Gi-14)

r= Wit =)
(905 — gi-14)
In order to apply Koren’s interpolation formula
uniformly, state quantities at the boundary were
calculated first using an appropriate boundary pro-
ceedure, as explained below. The finite differences
acroes the boundary were then replaced by twice
the finite difference from the cell center to the
boundary.

Roe’s approximate Riemann solver [11] was used
to calculate the flux acroes each cell interface.

Two different marching procedures were employed
to reach the steady state solution.

1. On scalar machines, a locally implicit, lin-
earized Gauss-Seidel iteration scheme was
used. In order to avoid non-physical states
(i.e. negative pressure) in the evolving flow,
the time-step used was based on the ratio
of the magnitude of the state vector to the
magnitude of its rate of change. This is the
Switched Evolution/Relaxation approach of
Van Leer and Mulder {12].

2. On vector machines it appeared advantageous
to use an explicit time-marching scheme.
Multi-stage schemes developed by Van Leer,
Tai, and Powell [13] with optimized short-
wave damping vectorize well and are effective
in avoiding non-physical transient states.

outward through the boundary. Along this upper
boundary the flow is nearly uniform, so that the
entropy is locally constant and derivatives along
the boundary can be neglected. In a coordinate
frame normal to the boundary one can define the
Riemann invariants

2a
y-1

R*:u;:i:

transported normal to the boundary along charac-
teristics with speed

u; ta

Here u, is the component of the flow velocity nor-
mal to the boundary, and a is the local sound
speed. Since the flow is subsonic inward, infor-
mation from the interior propagates out along the
u) + a characteristic. Thus the value of the R*
Riemann invariant should be extrapolated toward
the boundary in a manner consistent with the or-
der of the spacial discretization. The inward flux
is then completely determined by the Rt Riemann
invariant and three other flow quantities specified
on the boundary according to the free-stream state.

Along the boundary where the flow exits the grid,
both supersonic and subsonic outflow exists. For
the supersonic exit flow, no information can propa-
gate in from outside the computional domain, thus
the flux across the boundary is completely deter-
mined by the state quantities in the interior. For
boundary cells where the flow is subsonic outward,
information from outside can propagate in along
the u; — a characteristic. Thus, some value of
the R~ Riemann invariant should be specified; the
problem is that the exterior flow conditions are
not known here. Values from a known exact solu-
tion could be specified, but this would be incorrect
when considering arbitrary blowing distributions.
Hedstrom [14] proposed the time-dependent non-
reflecting characteristic boundary condition

@ auJ_ =0
In order to make accurate comparisons with the an- at pa a

alytical solutions, it is crucial to implement numerical
boundary conditions that are consistent with the ana-
lytical ones (Figure 3).

This type of boundary condition has the disad-
vantage that it produces a steady state dependent
upon the initial conditions. An order-of-magnitude
analysis of the governing equations shows that the
pressure is constant across the blown layer; this
condition can be enforced at the exit by using Hed-
strom’s boundary condition with the pressure gra-
dient as a source term. The exit boundary condi-
tion then becomes

¢ Along the inflow boundary of the grid, the flow nor-
mal to the boundary is supersonic inward, so there
are no out-going characteristics. Thus, the flux
into the cells along this boundary can be specified
explicitly according to the free-stream state.

o Depending upon the shape of the grid chosen, the

flux normal to the top boundary may be either %% —pa%"* =—-K(uy —a)-gs,l( > 0.

supersonic or subsonic inward. If the flow is sub-
sonic inward, disturbances from inside the com-
putational domain must be allowed to propagate

This enforces the correct behavior of the pressure
along the subsonic part of the outflow boundary.
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Figure 3: Schematic indicating the various types of boundary conditions encountered.

Typically values of K between 0.1 and 1.0 were
used. If K is taken too small or too large, conver-
gence to a steady state is delayed.

o Along the plate or wedge, the injected flow is sub-
sonic inward, except very close to the nose where
the flow can become supersonic for an z=% blowing
distribution. Thus one can specify the normal ve-
locity vy, the tangential velocity (equal to zero for
the cases considered), and the ratio of the injection
density to the free-stream density 5y, (assumed
constant along the wall). The wall pressure can
then be determined by the R~ Riemann invariant
extrapolated from the interior back toward the wall
with the proper order of accuracy. Near the wall,
the flow may not be locally isentropic; therefore,
the approximate incremental form of the Riemann
invariant

Ap — palAuy
should be used for extrapolation; barred quantities
refer to quantities averaged across the cell inter-
faces. The pressure then follows from

Pw—Pij = Pij0ij(Uiw —UYLij)=

%(Ap - ﬁ(-ZAU_L )eztrap.

The analytical solutions were employed in generating
grids that would adequately resolve regions of interest
in the flow field. Using the analytical predictions, grid
points were clustered about the wall, the free shear layer
and the shock (Figure 4). The clustering was based on
an expouential spacing in the y direction, and an al-
gebraic spacing in the x direction. Once a converged

solution was obtained, this adaptive procedure was it-
erated on to achieve an optimal grid-point distribution
for the case considered.

Numerical Experiments

Numerical experiments were conducted to obtain finite-
volume solutions of the Euler equations for comparison
with the analytical predictions for three different cases:

e Strong interaction on a flat plate.
e Predominantly weak interaction on a flat plate

o Predominantly weak interaction on a slender
wedge

The case of strong interaction on a wedge was not con-
sidered since the theory assumes that the wedge thick-
ness is small in comparison to the blown layer thickness.
Thus to lowest order, the solution for strong interaction
on a flat plate is recovered.

For the case of strong interaction on a flat plate, good
agreement has been obtained. The parameters chosen
for this casc are;

6 = 0.09,
M. = 20,
M2 6% = 3.24,

P-lw = pinz’ected =1.
Pyree-stream
Early results on a rectangular grid showed poor agree-
ment with the analytical solution. Cross-sectional pro-
files of the flow varibles indicated the presence of a
viscous-like shear layer where the numerical code was
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Figure 5: Seperating streamline shapes for strong in-
teraction on a flat plate.

trying to model the free slip-stream. This is due to
the artificial dissipation associated with the numeri-
cal scheme. Restructuring the grid to better fit the
flow field, and clustering grid points near the numerical
shear layer resulted in a reduction in the thickness of
this layer. As the thickness of the layer decreased, the
numerical solution approached the analytical solution.

A converged second-order solution on a (83x91) grid
shows good agreement between the numerically deter-
mined blown-layer shape and the analytical prediction
(Figure 5). The pressure distributions along the plate
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Figure 6: Strong interaction pressure distribution along
a flat plate.
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Figure 7: Separating streamline shapes for weak inter-
action on a flat plate.

also compare well with each other (Figure 6). Further
grid refinements were attempted to verify that the nu-
merical solution continued to approach the analytical
solution as the mesh spacing decreased. It was found,
however, that by refining the grid too far, the numer-
ical dissipation can become so small that the solution
becomes unstable and exhibits features similar to those
of a physically unstable shear layer (Figure 12).

Fair agreement with the analytical solution was ob-
tained for the case of weak interaction on a flat plate.
In this case, the blown layer thickness is thin in compar-
ison with the shock layer. The shock is very weak, and
lies roughly along the Mach lines. This case presents
two difficulties. The magnitude of the blowing is much
smaller so high resolution of the singular blowing dis-
tribution and flow features at the nose is even more
important. Also, the thinness of the blown layer makes
the solution more sensitive to the existence of a numer-
ical shear layer whose thickness is grid dependent. The
parameters chosen for this case are;

6 =0.01,
Mo =10,
Prw = 1.

A comparison between the analytical and the computa-
tional separating streamline shapes shows shows a dis-
crepency of about five percent in the thickness of the
blown layer (Figure 7). This discrepancy is also ap-
parent in the pressure profiles along the plate (Figure
8).

The last case considered was that of weak interaction
on a wedge. For this case the parameters were chosen
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Figure 8: Weak interaction pressure distribution along
a flat plate.

to be;

Plw =L

Figure 9 shows good agreement between the analytical
and numerical separation streamline shapes, but Figure
10 shows that the numerically calculated pressure is
higher than that predicted analytically. The analytical
work assumes an infinite value of (M a)?. If large but
finite values of M, « are considered in the analysis, the
resulting analytical pressure distribution,

Pw 2 2 6 3%
—_—=M . . - e
P N’ (1946+2084az + ),
compares well with the numerically determined values
(Figure 11).

Further Work

With the validation study completed, the code will be
used to obtain flow solutions in cases where no ana-
lytical predictions exist. Of particular interest is strip
blowing as a practical means to control the pressure
distribution along the surface. The code has been ex-
panded to include the effects of physical viscosity and
heat conduction, i.e. to approximate the Navier-Stokes
equations. For validation of the code in viscous cases,
analytical solutions are again avaiable [3]. A future pa-
per will include some comparisons in the viscous regime.
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Figure 9: Separating streamline shapes for weak inter-

action on a wedge.
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Figure 11: Weak interaction pressure distribution com-
parison with finite M, a correction.
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Trajectory Optimization of Earth-Launched Interceptors at Supercircular Speeds

R.M. Howe, E.G. Gilbert. Ping Lu, N.X. Vinh
The University of Michigan, Ann Arbor, Michigan 48109

ABSTRACT

An alternative to satellite-based kinetic energy weapons for intercepting ballistic missiles early in their rajectories is the use of
earth-based hyper-velocity rockets. Simple calculations show that with exisong solid-propellant iechnology, rockets can be accelerated 1o
more than twice circular-orbit speeds with mass ranos of several thousand to one. For intercept distances ranging from 2000 to 5000
miles this mansiates into flight umes of between 4 and 10 minutes. This permits interception of hostile ballistic missiles dunng their
ascent trajectory when vulnerability remains high. The use of mimature guided warheads in the defensive weapon reduces the interceptor
takeoff weight to within reasonable bounds. Parameters to be opumized include the mass rauos and thrusting ome for each stage. the
coasting time between powered stages, and the parameters used to represent the ume history of angle of attack. A quasi-Newton
minimization algorithm is utilized with penalty furctions to implement the terminal conswraints, as well as any other constraints. The
necessary gradients are computed numencally using finite differences. The multiple stage trajectories are caiculated many thousands of
ames faster than real time using an AD 100 multiprocessor computer. A VAX host computer implements the optimizaton algonthm and
inputs new parameters 1o the multiprocessor for each successive trajectory run. In this way the total required time for an overall
trajectory optimizagon consisung of several thousand trajectories is reduced from several hours to several minutes.

L INTRODUCTION

The study of satellite-based kinetic-energy weapons for intercepting intercontinental ballistic missiles during their ascent wrajectory
represents one of the major efforts in the current U.S. Strategic Defense Initiative program. In this paper we consider an alternative 10
space-based weapons, namely, the use of land or sea-based kinetic energy interceptors. When such interceptors are based on the U.S.
continent, ranges of up to SO00 miles are needed. If the interceptors are sea launched, for example from submarines, the required
interceptor range may be reduced to as little as 2000 miles or less. In either case the interceptor must accelerate to very high speeds,
typically twice circular orbit velocity, in order to reach a target at these distances within several minutes.

In order to achieve these velocities, a rocket powered interceptor requires an overall mass ratio of several thousand . one. Even
50, the interceptor takeoff weight can be held within reasonable bounds by the use of miniature guided warheads. It is clear that such
large mass ratios can only be achieved by using between 4 and 7 rocket boost stages. [n this paper we consider the problem of
optimizing a number of stage parameters and the angle of attack control in order to minimize the overall required mass ratio. The time
history of angle of attack is parameterized by letting the angle of attack for each thrusting stage vary linearly with time. Additional
parameters to be optimized include the thrust bum times for each stage and the coast times between stage burns. Although rockets of this
tvpe would normallv be launched straight up. we also include the initial launch flight-path angle as a parameter. This is based on the
assumption that a fairly rapid pitchover manuever can be performed immediately after launch to achieve the desired initial flight path
angle.
Once the trajectory optimization problem is converted to a parameter optimnization problem. a quasi-Newton minimization
algorithm is utilized with penalty functions to implement the terminal constraints required for intercept, as well as any additional
constaints. The necessary gradients of the cost function with respect to the parameters are computed numernically using finite
differences. A compiete multi-stage trajectory must be run using numerical integration for every evaluauon of the cost function. For
each set of N par--~eters this means that N+1 complete majectories must be computed, one to evaluate the cost function for the given
parameter setung., and N to evaluate the gradient of the cost function with respect to each of the N parameters. For the trajectory
optimuzation problems we have considered thus far, between 10 and 20 parameters have been used. Thus between 11 and 21 complete 4
10 7-stage trajectories must be computed numerically for a single iteration of the optimization procedure. Also, each iteration uulizes a
line search which requires several additional trajectory computations. lt has been found that between 200 and 400 iterations are needed
unul satisfactory convergence to an optimal solution is achieved. It follows that several thousand trajectories must be computed for each

opumizaton case considered.

. In the next section scalar equations of motion for the interceptor trajectory are presented. Subsequent sections discuss the
opumization problem, its numerical solution, and results for a typical 4-stage trajectory optimizagon.

2. EQUATIONS OF MOTION

In order to reduce the trajectory computation times we will only consider the two dimensional equations of motion of the
wnterceptor. As a further simplification, we will neglect the effect of earth's rotauon. We feel that neither of these simplifications alter the
overall nature of the optimization problem. More comprehensive equations of motion can always be incorporated 1nto the opuruzauon
problem at a later ume to improve the accuracy for those cases which may turn out to be of practical interest. Thus we consider the
wntercepior rocket 10 be a point mass m moving 1n a plane which contains the center of a sphencal, non-rotating earth with inverse square
graviational field. A convenient and efficient method for representing the velocity state of the interceptor is in terms of the total velocity
and the flight path angle with repect to the local horizontal {1]. This leads to the following two-dimensional equations of modon:
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where
r = radial distance from center of earth 8 = polar angle PS
V = toual velocity y = flight path angle
m = interceptor mass T = rocket thrust
@ = angle of artack D = aerodynamic drag
L = aerodynamic lift 1o = reference radius
g = gravity acceleration atr =T, Isp = specific impulse of rocket motor
o
The aerodyn: nic lift, L, and drag, D. are given by the following formulas:
1 \
L =5pVAC. D=3pVaAG, ©)
C = Geosa -C sina, G = Gsina +C, cosa W) ®
where
p = imospheric density A = interceptor cross-sectional area
Cy = lift coefficient Cp = drag coefficient
Cy = normal force coefficient C, = axial force coefficient
Cy and C,. which r-present acrodynamic normal and axial force coefficients in body axes, can be approximated for slender bodies by @
the following formu: s [2}]:
Cy = sin2acosd + 2 Agnalsinal, C, = 0.15 (8)
- 2 nd oA
where
A = rocket length d = rocket diameter ®
The atmospherc density, p. in Eq. (6) is a funcdon of the rocket aluwde h, which is given by the equation
h=(R-1r 9)
We have considered three different methods for approximanng the vanation of p with h. The first utilizes table lookup with linear
interpolation based on a tabulated standard atmosphere. This method introduces into the simulation a functon with discontinuous slopes.
which has the potential of causing numencal difficulties in the descent algorithm (see Section 4). The second method uses the following
exponental approximanon: L
p = poe-Bh (10
where 1/B = 23,500 ft and p, is the atmospheric density at sealevel. The third method uses the following analytic approximation [3]:
®
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plpo = [Ag+ Ath+ Ash +.--- + Ajhil]-4 (il

with
Ag = 1.0000000000 A1 =0.3393495800 x 10! Az =-0.3433553057 x 102
Ay = 0.5497466428 x 10-3 As =-0.3228358326 x 104 Ag = 0.1106617734 x 10-5
Ag=-0.2291755793 x 107 A7 =0.2902146443 x 109 Ag =-0.2230070938 x 10-1!
Ag =0.1010575266 x 10-13 Ajg=-0.2482089627 x 10-16 Arf = 0.2548769715 x 10-19

Eq. (1) is valid from 010200 km. altitude and is accurate to better than 5 percent for altitudes upto 70 km. It isa considerably better
approximation than the exponential model in Eq. (10) and takes no longer to execute than the table lookup scheme. Thus it represents
our preferred approach.

Dimensioniess versions of Egs. (1) through (9) and Eq. (11) are used for the trajectory simulation of each inteceptor stage while

thrusting or coasting (T =0). The state variablesr. 8, V and v are continuous from one stage to the next. On the other hand, the state
vanable m, which represents the mass of each stage. undergoes a discontinuous decrease each time a stage bums out and is dropped
Note thar the mass state m can be made conunuous by defining 1t as the mass of rocket fuel divided by the initial takeoff mass. The tmai
instantaneous mass tor each stage 1S then the sum ot the fuel mass ang the 1nert mass. 1 NE DU NIME TOF €4CN SARE, dS WEIL & LIE CuaML
nime per stage, consurute parameters 1o be opnrmzed. For a given stage mass ratio, the stage bumn time determines the thrust level for the
stage. Thus the parameters representing stage burn umes are equivalent to parameters representing stage thrust levels. As noted
previously, the tme history of angle of attack ts parametenzed by letung it vary linearly for each stage. Thus an additional parameter per
stage is the ime-rate-of-change of angle of arttack.

L N IN MI N

To complete the statement of the optimization problem it is necessary to introduce certain constraints on the trajectory and its
defining parameters. The most obvious of these are the ones required for rarger interception. After final stage cutoff, the payload must

coast in such a manner that at the specified intercept time, 1, the position variables, r(t¢) and 6(tf), match those of the target.

There are several ways to implement the intercept conditions. One way is to impose them at the time of final-stage cutoff, tc If

1(te). O(tc), r(tf), and 6(tp) are known and the coast is an out-of-the-atmosphere conic transfer, the values ¥(tc) and V(t¢) required for
intercept are determined by solving an appropriate Lambert problem. This can be done numerically by the methods given in {4]. The

errors between the required and actual values of ¥(t) and V(i) must be zero for intercept and these conditions give two equality
constraints on the trajectory att = t.

We have found that unconstrained optimal conic coast trajectories re-enter the atmosphere or even pass through the earth’s
surface. To assure that this doesn't happen, the minimum altitude during the coast is computed (as part of the solution of the Lambert
problem) and specified to lie outside the sensible atmosphere. The error between the computed minimum altitude and its specified value
constitutes, when set 1o zero, a third equality constraint.

Another way to implement the intercept condition is to integrate numerically the equations of motion of the final coast trajectory,

just as the equations for the previous stages were integrated. In this case the errors between the interzeptor coordinates r(tg), 8(tf) and the
target coordinates at the final tume 17 are set equal to zero to form two equality constraints. As before, a minimum allowable alurude
outside the sensible atmosphere can be chosen for the final coast trajectory. This minimum altitude is then the third constraint.
Alternatively, the effect of the atmosphere itself, which is included in the ajectory equatons. will ensure that a realistic alntude
constraint 1s enforced when the final coast trajectory equations are integrated. Indeed, this is the required approach in the aero-assisted
case, where the final coast trajectory actually utilizes aerodynamic down lift to hold the trajectory at near constant altitude in the presence
of supercircular velocity. In Secton 5 we consider an example of this type.

In addition to the equality constraints on the trajectory, inequality consmaints may be imposed on some of the problem

parameters. For example, an initial stage acceleration, A°1, may have upper and lower limits, Amax and Amin. To avoid meanng these
constraints directly in the algorithmic process, we impose them implicitly by introducing a nonlinear ransformation of a new parametnic
vanable. In the case just mentioned a suitable ransformation 1s
AO = Amu M Amm . Amu ) Amm sin a
T 3 3 T

where aT is the new unconswained parameter.

(12

Putting all of the above details together tn a compact notation yields a problem of the form
munimize f(z) subjectto g(z) =0, i=1,23. (13)

Here. f(z) is the ratio of the launch mass to the payload mass. the gi(z) are the errors in meeting the equality constraints, and z is a
vector whose components are the “unconstrasned” parameters arising from models described in Secuon 2. Given z, it is clear that f(2)
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and gj(z) may be evaluated by integrating the equations of motion, computing m(te), Y(tc), V(to). rtc), and 6(t¢), and solving the Lambert
problem determined by the target specification. When the alternanve method invoiving numerical integraton of uie final coast trajectory

is used to implement the intercept condition, f(2) is stll evaluated from m(tc), but gi(2) is evaluated from r(tg) and 6(1y).

Our algorithm fer the numerical solution of (13) requires the gradient (collection of N first partial derivatives) of functions such as
f(2). While it is possible to denive formulas for the parnals (they may be written in terms of the differential equations adjoint to the
linearized equarions of motion), they are exceedingly complex because of the nonlinear funcuons appearing in Egs. (1) - (9) and (11).
This mouvates our desire 1o use finite differences for the gradient calculations.

4_NUMERICAL SOLUTION OF THE OPTIMIZATION PROBLEM

A variety of numerica! approaches have been used to solve trajectory optimization problems with equality constraints. These
include: (1) gradient projection methods, (2) Newton-Raphson solution of the necessary conditions, (3) penalty function methods.
Approach (1) gives slow convergence; approach (2) requires second derivatives of probiem data and good initial estimates; approach (3)
leads to badly condidoned (though unconstrained) minimizanon problems. We have followed approach (3), attacking its disadvantage by
using a rapidly convergent quasi-Newton algorithm |5,6] and an augmented Lagrangian for the penalty function.

In the usual penalty function method approximate solutions of {13) are sought by algorithmic minimization of

1
Fold) = £ + D (g @I’ (14)

t=1

It can be shown (5.6] that the equality conditions can be accurately enforced by choosing the penalty coefficients, u; > 0, to be
sufficiently large. In practice, numerical hazards, such as slow convergence or convergence to false minima, are reduced by minimizing
Fp(z) several times with successively larger values for the penalty coefficients. At each successive stage the starting point for the
minimizaton algorithm is taken as the solution point from the previous stage. Even so, the conditioning of Fp(z) worsens {5,6] as the
Hi increase and there is a practical limit to the accuracy which can be achieved. Numerical errors in the minimization aigorithm and the
evaluation of Fp(z) and its gradient eventually become limiting.

In the augmented Lagrangian approach Fp(z) is replaced by

3
FL@ = f(2) + Zl\g,(z) S:},Li[gl(zn2 (15)

1=1 121

where the A, are real numbers approximating the Lagrange muldpliers for the minimization problem (13). When Fi(z) is minimized. it is
possible to satisfy the equality constraints accurately with much smaller values for the penalty coefficients [5.6). The resulting improved
conditioning of FL(z) reduces the bad effects of the numerical errors. Again, it is advantageous (0 solve a sequence of minimization
problems with successive initializations, where 1n this case both the A; and the u; are adjusted. We have used the adjustment scheme
proposed by Powell and descnibed on page 134 of {5] with good results. It eliminates the need for human intervention in selecting the

parameters A and W; and improves accuracy of equality constraints over the simple penaity function approach by at least an order of
magnitude.

Because of the highly nonlinear character of FL(z) and its poor conditioning, it is necessary to pay careful attention to the
procedure for its unconstrained mummization. Centainly, the second order properties of F (z) must be 1aken into account. We have
found the BFGS, quasi-Newton program of Shanno and Phua {7] to be effective. lts line search has been modified to compute
denvatives along the search direction directly by forward differences. This eliminates the need for gradient evaluations during the line
search.

The performance of a quasi-Newton algonthm is predicated on the smoothness of the function being minimized. The function
should be at least twice conunuously differendable. Here, the representation of empirical data appearing in the equations of motion is
importaint. See, for example, the comments in Section 2 on computing the atmosphenc density by table lookup with linear interpolation.

Another concemn is the forward difference computation of the partial derivatives of F{(z). If the step size is too small, the effects
of round off errors are exacerbated: if the step size is too large, Tuncaton errors become appreciable. If the machine precision is €, it can
be argued (6] that the step size should be the order of €172 In our case the machine precision £ = 10-12 is determined by the AD 100,

which has a 40 bit significand. We have found that the step size 106 is reasonable, but that expernimentation with the step size can
improve the accuracy noticeably. Even better accuracy has been obtained by using central differences for the partial derivatives. It
reduces the effects of round-otf errors because a larger step size may be used for the same truncation error (6]. Of course, 2N + 1
evaluanons of FL(2) are then needed to obtain Fi(2) and its gradient.

It should be mentioned that the trajectory state equations were solved numericaily using fourth-order Runge-Kutta integranon
with a fixed step size. A single-pass predictor method with a Gear RK-4 startup algorithm was found to give better performance in some
cases [8] and wil be further invesugated in later studies.
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S_EXAMPL RY SOL N

Two example optimal trajectory solutions are considered in this section. (1r) - 8¢, the total change in polar angle of each
trajectory, is set equal to 30 degrees. This corresponds to an interceptor range of 2094 miles. The total ume of interceptor flight is
prescribed to be 300 seconds and the target 1s intercepted at an altitude of 200 km. Stage takeoff weight 1s equal to 10,000 kg and
physical parameters are assumed to be simular to those of a Minuteman III. The specific impuise Isp of the rocket engines is equal to 300
seconds, and the rano of initial fuel weight to inert weight for the rocket motor of each stage 1s assumed to be 10. The intercept condition
is implemented by two equality constraints that require the interceptor coordinates at the final time t; to match the target coordinates, Two
cases are considered. acroassisted and non-acroassisted. In the aeroassisted case the final coasting stage reenters the earth's atmosphere
with a controlled angle of anack which can be used to generate downward lift. In the non-aeroassisted case the angle of attack of the final
coasting stage is maintained at zero, which means that acrodynamic forces can only cause drag. In each case there are 4 booster stages.
with equal mass ratios prescribed for each stage. The common mass ratio is therefore a parameter. As noted earlier, the performance
objective 1s to maximize the final payload weight. The results are summanzed in Table 1.

TABLE 1. Ogptimal Trajectory Data for 4-stage Interceptor

Aeroassisted Non-aerpassisted
Final optimal payload weight 973 kg 5.63kg
Mass ratio per stage 3.98 4.33
Minimum altitude tn final coast to target 93.82 km 96.82 km
Bumnout speed (V¢ = circular orbit speed) 1.766 V. 1.775 V¢
Burnout altitude 98.24 km 155.04 km
Launch flight path angle, ¥, 82.8 deg 60.6 deg
Inital thrust accelerartion, stage | 1305 g 928¢g
Burn time, stage 1 17.21 sec 24.86 sec
Coast time between stages 1 and 2 6.49 sec 1.84 sec
Initial thrust acceleratuon, sage 2 2337¢g 1293g
Bum time, stage 2 9.61 sec 17.84 sec
Coast time between stages 2 and 3 5.35 sec 241 sec
Initial thrust acceleration, stage 3 3140 g 2387¢
Burn time, stage 3 7.15 sec 9.67 sec
Coast time between stages 3 and 4 14.85 sec 56.74 sec
Initial thrust acceleration, stage 4 3752¢g 3167¢g
Burn time, stage 4 5.99 sec 7.29 sec
Final coast time to target 233.67 sec 179.36 sec
Total flight time 300 sec 300 sec
Toral distance 2094 miles 2094 miles

From the table it is clear that the optimal aeroassisted trajectory yields a significantly larger payload, 9.73 kg versus 5.63 kg for
the non-aeroassisted case. In Figure 1 are shown ume history plots of velocity, flight path angle, dynamic pressure and angle of attack
for the aeroassisted optimal trajectory. Figure 2 shows altitude versus polar angle plots for both the aeroassisted and non-aeroassisted
trajectonies. Note how the aeroassisted trajectory is able to maintain an approximately constant alutude of some 95 km over more than
half of the final coast to intercept This 1s possible despite the supercircular speed because of the acrodynamic down lift, which reaches a
maximum of 1.87 g during this portion of the trajectory. The maximum total downward acceleration, including gravity. is therefore
2.87g. Since the centrifugal acceleration in g units is V2 (V. is the circular-orbit velocity), it follows that constant altitude (i.e.. a
circular orbit) will. in the presence of 1.87 g of down lift. be maintained at a velocity of (2.87)!/2 or 1.694V.. Reference to the plotof V
versus tme in Figure | shows that this 1s indeed the case. On the other hand we see in Figure 2 that the non-aeroassisted trajectory must
climb to over 150 km before the final stage burm in order 10 avoid sigmificant penetration of the aumosphere. This results in a
considerable more expensive trajectory in terms of required mass rato.

The plot of angle of attack & versus time in Figure 1 shows clearly the linear variation of a for each stage. Note that zero angle
of attack is assumed during the coast between stage burns. This is based on the assumpuon that the interceptor is aerodynamically stable
duning these coasts with no active thrust vector control. Means of active attitude congol would be required to maintain the linear angle of
attack vanation shown for the final coast to intercept. One option for achieving this would be to provide thrust vector control utihzing a
fow level of thrust duning this final portion of the trajectory. Such thrust will probably be required in any event to provide course
corrections to intercept the target. When this 1s included in the overall rajectory opumization, 1t may very well produce a non-
aeroassisted optimal trajectory which 1s competitive with the aeroassisted case, since now a downward component of thrust can be used
to replace the acrodynarmuc down lift.
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Fignre 1. Time history plots for the aeroassisted optimal trajectory.

§._CONCLUSIONS

In this paper we have described techniques for computing the optirnal trajectories of earth-launched interceptor rockets which are
accelerated to over twice orbital velocity. The objective of the optimization is to maximize the payload with a given interceptor takeoff
weight. Terminal constraints have been enforced using penalty functions. The required gradients of the cost functions have been
computed numerically using finite differences. Through the use of a special muliprocessor computer, the AD 100, in conjunction with a
VAX host computer, we have been able to reduce the titme required for each trajectory optirmnization from hours to minutes.

Preliminary resuits have been presented for a 4-stage example. It is found that allowing a coast period between booster stages

and using an aeroassisted trajectory to generate down lift during the final coast segment improves the optimal payload significanuy.

* Future research effons will include parametric studies of the effect of different prescribed flight imes, target range and altitude, payload
mass, and refined acrodynamic and propuision modeis.
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Computation of Optimal Trajectories Using State-of-the-art Simulation
Technology

R.M. Howe, E.G. Gilbert, Ping Lu, G. Shorr, N.X. Vinh
The University of Michigan, Ann Arbor, Michigan 48109

ABSTRACT

Simulation techniques are described for determining the optimal control of earth-launched
interceptor rockets which are accelerated to over twice orbital velocity. Each optimization case
requires many thousands of trajectory calculations. In order to reduce the overall computational
time the multiple stage trajectories are calculated using an AD 100 multiprocessor computer. The
VAX host computer implements the optimization algorithm and inputs new parameters to the AD
100 for each successive trajectory run. The necessary derivatives in the optimization process are
computed numerically on the AD 100 using finite differences. A quasi-Newton minimization
algorithm is used with penalty functions to implement the terminal constraints. For a prescribed
intercept time of flight the overall mass ratio is minimized with respect to the time history of angle
of attack and the individual stage burn and coast times. A Sth-order single-pass predictor/corrector
integration method with a Gear RK-4 startup algorithm for each stage is shown to provide very fast
and accurate trajectory solutions. Using the AD 100 for the trajectory calculations reduces the
overall time required for each optimization to minutes, compared with hours when the VAX alone
is used.

1. Introduction

An alternative to satellite-based kinetic energy weapons for intercepting ballistic missiles
carly in their trajectories is the use of earth-based hyper-velocity rockets. Simple calculations show
that with existing solid-propellant technology, rockets can be accelerated to more than twice
circular-orbit speeds with mass ratios of several thousand to one. For intercept distances ranging
from 2000 to 5000 miles this translates into flight times of between 3 and 10 minutes. This in turn
permits interception of hostile ballistic missiles during their ascent trajectory when vulnerability
remains high. The use of miniature guided warheads in the defensive weapon reduces the
interceptor takeoff weight to within reasonable bounds.

In order to achieve interceptor velocities of twice circular orbit speed or more, it is
necessary to utilize between 4 and 7 rocket boost stages. In this paper we consider the problem of
optimizing a number of stage parameters and the angle of attack control to minimize the overall
required mass ratio. The time history of angle of attack is parameterized by letting the angle of
attack for each thrusting and coasting stage vary linearly with time. Additional parameters to be
optimized include the thrust burn times for each stage and the coast times between stage bums.
Although rockets of this type would normally be launched straight up, we also include the initial
launch flight-path angle as a parameter. This is based on the assumption that a fairly rapid
pitchover manuever can be performed immediately after launch to achieve the desired initial flight
path angle.

Once the trajectory optimization problem is converted to a parameter optimization problem,
a quasi-Newton minimization algorithm 1s utilized with penalty functions to implement the terminal
constraints required for intercept. The necessary gradients of the cost function with respect to the
parameters are computed numerically using finite differences. A complete multi-stage trajectory
must be run using numerical integration for every evaluation of the cost function. For each set of
N parameters this means that N+1 complete trajectories must be computed, one to evaluate the cost
function for the given parameter settings, and N to evaluate the gradient of the cost function with




respect to each of the N parameters. For the trajectory optimization problems we have considered
thus far, between 10 and 20 parameters have been used. Thus between 11 and 21 complete 4 1o 7-
stage trajectories must be computed numerically for a single iteration of the optimization procedure.
Also, each iteration utilizes a line search which requires several additional trajectory computations,
It has been found that between 200 and 400 iterations are needed until satisfactory convergence to
an optimal solution is achieved. It follows that several thousand trajectories must be computed for
each optimization case considered. Typical overall computation times for a single case turn out to
require many hours when using general-purpose computers such as a VAX or Apollo. Such long
computational times are not only expensive, but also frustrating when one is trying to perform
parametric studies which may require many optimization cases to be run. For this -eason we have
turned to the AD 100 computer for solving the most computationally intensive part of the problem,
which is the trajectory calculation associated with the many evaluations of the cost function.

The AD 100 is a multiprocessor with special architecture and software which has been
optimized for the solution of ordinary, nonlinear differential equations. The computer uses emitter-
coupled (ECL) logic with floating-point word lengths of 53 and 65 bits. It can perform a 53-bit
floating-point multiply in 0.075 microseconds and a 65-bit floating-point add in 0.1
microseconds. The equivalent overall instruction rate exceeds 100 MIPS (millions of instructions
per second). Because of the short multiply and add times, the AD 100 is extremely fast in the
solution of scalar problems. Although the principal application of the AD 100 has been the real-
time simulation of complex dynamic systems, such as aircraft and missiles, its overall speed can
also be exploited in the sort of optimization problems described in this paper.

In addition to using the AD 100 for the trajectory computations, we have devoted
considerable effort to choosing integration algorithms which are both accurate and fast running.
We have also attempted to use efficient coordinate systems in which to write the scalar equations of
motion for the interceptor trajectory. In the next section these equations are presented. Following
this, Section 3 describes the integration methods wi*ch were found to be particularly fast and
accurate. Subsequent sections discuss the optimization problem, its numerical solution, and results
for a typical 4-stage trajectory optimization.

2. Equations of Motion

In order to reduce the trajectory computation times we will only consider the two
dimensional equations of motion of the interceptor. As a further simplification, we will neglect the
effect of earth's rotation. We feel that neither of these simplifications alter the overall nature of the
cptimization problem. More comprehensive equations of motion can always be incorporated into
the optimization problem at a later time to improve the accuracy for those cases which may tum out
to be of practical interest. Thus we consider the interceptor rocket to be a point mass m moving in
a plane which contains the center of a spherical, non-rotating earth with inverse square gravitational
field. A convenient and efficient method for representing the velocity state of the interceptor is in
terms of the total velocity and the flight path angle with repect to the local horizontal [1].
However, at takeofT, when the interceptor velocity is zero, this results in a singularity in the flight-
path angle rate which can cause numerical difficulty. We therefore chose to represent the velocity
state by means of the horizontal component u and vertical component w of the total interceptor
velocity [2]. When polar coordinates are used for the position state variables, this leads to the
following two-dimensional equations of motion:
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u = horizontal velocity component w = vertical velocity component

r = radial distance from the center of earth 6 = polar angle

m = inerceptor mass a = angle of attack

Y = tan-!(w/u) = flight path angle T = thrust, constant for each stage

D = aerodynamic drag, body axis L = acrodynamic lift, body axis

ro = radius of earth go = gravity acceleration at sea level

Isp = specific impulse of rocket motor

For convenience we choose to rewrite Eqgs. (1) through (5) in terms of dimensionless state
variables U, W, R and M in accordance with the following definitions:

U = d , W=-—w—-, R=-r—, M=Ln— 6)
2% /gor0 ) m, -

where _[g,1, is the circular orbit velocity at 1, and m, is the initial mass of the stage.
In terms of the cimensionless state variables the equations of motion can be written as
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where
At = thrust acceleration in g units Ap = body axis drag acceleration in gg units
AN = body axis lift acceleration in go units C, = body axis drag coefficient
A = rocket cross-sectional area p = atmospheric density
po = sea-level atmospheric density V = dimensionless total velocity
A = rocket length d = rocket diameter

Reference to equations (7), (8), (13) and (14) shows that the aerodynamic drag and normal
forces are calculated, respectively, along and perpendicular to the body axer. of the rocket. Eqs.
(13) and ](14) are simple but fairly good approximations for the acrodynamic forces on slender
bodies [3].

The atmospheric density ratio p/pg in Eq. (13) is a function of the rocket altitude h, which
is given by the equatior
h=R-lr (17

We have considered three different methods for approximating the variation of p/pg with h. The
first utilizes table lookup with linear interpolation based on a tabulated standard atmosphere. This
method introduces into the simulation a function with discontinuous slopes, which has the potential
of causing numerical difficulties in the descent algorithm (see Section 5). The second method uses
the following exponential approximation:

pipo = ¢- B (18)
where 1/ = 23,500 . The third method uses the following analytic approximation [4):

plpo = [Ag+ Ath+ AshZ +---- + Ajjhll}-4 (19)
with
Ag = 1.0000000000 A =0.3393495800 x 10-} Az = -0.3433553057 x 10-2

A3 =0.5497466428 x 10-3 A4 =-0.3228358326x 104 Ag= 0.1106617734 x 105
Ag=-0.2291755793 x 10°7 A7 =0.2902146443 x 109  Ag = -0.2230070938 x 1011
Ag = 0.1010575266 x 10-13 A o= -0.2482089627 x 1016 A;; = 0.2548769715 x 10-19




Eq. (19) is valid from 0 to 200 km. altitude and is accurate to better than 5 percent for altitudes up
to 70 km. It is a considerably better approximation than the exponential model in Eq. (18) and
takes no longer to execute than the table lookup scheme. Thus it represents our preferred
approach.

Egs. (7) through (17), along with cither (18) or (19), are used for the trajectory simulation
of each inteceptor stage while thrusting or coasting (T = 0). The state variables R, 8, U and W are
continuous from one stage to the next. On the other hand, the state variable M represertiag the
dimensionless mass of each stage is reset to 1 at the initiation of each new stage. From Eq. (12) it
follows that AT represents the thrusting acceleration in go units for each stage at engine ignition.
This is an important optimization parameter, since for a given mass ratio it determines the thrusting
time for the stage. Note that the dimensionless mass state can be made continuous by defining it as
the mass of rocket fuel divided by the initial takeoff mass. The total instantaneous mass for each
stage is then the sum of the fuel mass and the inert mass. As noted previously, the time history of
angle of attack is parameterized by letting it vary linearly for each stage. Thus a second parameter
per stage is the time-rate-of-change of angle of attack.

3. Numerical Integration Method

Since each trajectory optimization requires the computation of many thousands of
trajectories, there is a great deal of leverage on selecting accurate and efficient numerical integration
algorithms for the trajectory optimization. Based on theoretical considerations and computer
experimentation, we decided to select a single-pass Sth-order Adams-Moulton (SPAM-S)
predictor-corrector algorithm as our principal method. In the single-pass Adams-Moulton method
the derivative of each state is always based on the predicted rather than the corrected value of the
state [5]. To illustrate the method we consider the state equation

X = F[X,U®)] (20)

We define the estimate of the derivative F at the kth integration step based on the estimated state at
the kth step by the formula

F, = FIX,, UGh)] @)

where h is the integration step size. From previously computed derivative estimates we compute
an estimate for the state Xp.1 based on Xp with the following Adams-Bashforth §-th order
predictor formula:
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In the conventional AM-S integration method, the predictor formula corresponding to Eq. (22)
utilizes derivatives based on the actual states Xp rather than the state estimates used here. This
requires a first pass through the state equations to compute Fp from X,, a computation which is




avoided in this single-pass method. In the conventional AM-5, then, the derivatives F, through
Fp.3 are also based on actual states. Only Fp,1 is based on the estimated state obtained from the
predictor pass.

It should be noted that both the predictor formula in Eq. (22) and the corrector formula in
Eq. (23) are derived from the area under a quartic time function which passes through each of the
five derivatives. The resulting integration algorithm is therefore 5th order. The method of z
transforms can be used to determine the characteristic root errors introduced by numerical
integration methods [S). For the SPAM-5 represeated by Eqs. (22) and (23), the fractional error in
characteristic root is given approximately

_ A*-A
e = x

Here A is the characteristic root of the continuous system being simulated and A* is the equivalent
characteristic root of the digital system when using the SPAM-5 integration with a step size of h.

Reference to Eq. (22) shows that the Sth-order predictor algorithm presents a startup
problem, since at t = O the previous 4 derivatives are unknown. The same startup problem
reappears every time there is a step change in the state-variable derivative, such as will occur in our
trajectory simulation during staging. Actually, the Sth-order predictor will in fact only exhibit Sth-
order accuracy when state variable derivatives up to order 4 are continuous. Thus it is important to
represent the time variation of angle of attack for each stage by functions with appropriate
smoothness, such as the linear time function we have assumed here.

One method of solving this startup problem is to use a Runge-Kutta algorithm for the first
four integration steps in each stage before switching to the Sth-order predictor-comrector method.
Unfortunately, this will add a large number of integration passes to the simulation of each stage
and negate much of the speed advantage inherent in the single-pass predictor-corrector method.
For example, using RK-4 as the startup method for the first four integration steps requires 16
passes through the state equations, and the resulting states will only be accurate to the 4th power of
the step size h. If we use a total of 20 integration steps for each stage (using SPAM-S we have
found that this yields accuracies of the order of one part per million), then the total number of
passes through the state equations per stage will be 4x4 + 16 = 32. Thus standard RK-4, when
used for the first 4 steps as a startup method, requires roughly half of the overall computer
execution time for the 20-step simulation of each interceptor stage.

A much more efficient startup method which at the same time provides Sth-order accuracy
is an RK-4 startup algorithm due to Gear [6]. Here an RK-4 method which requires § passes
through the state equations is used to compute Fo, Fo', Fg", and Fp"', i.e., the first four initial
derivatives of the state variable X. These denivatives are used in power series formulas to compute
the state X3 two steps in the future, as well as the derivatives F2, F1, F_1, and F.3. All the startup
derivatives are now available to initiate the SPAM-5 algorithm for subeqent integration steps. For
a total of 20 integration steps per stage the total required number of passes through the state
equations is now S + 18 = 23. The equations for the Gear RK-4 startup algorithm, when used
with a step size H, are the following, where Xpy = X(nH), Uny = U(nH):

. %(M)5 , |Ah}l << 1 (24)

k; = H-F (Xo, Up) ; XH = Xo + k)

k2 = H-F (Xy, Un) ; XoH = Xo + 2k2

k3 = H-F (X21, U2nH) ; X3H = Xo + (3/4) (k1 + 3k3) (25)
ks = H-F (X3y, Usn) s XaH = Xo + (1/2) (k1 + 2k2 + k3 + 4ky)

ks = H: F (X4H, UsH) ; XsH = Xo + (1/12) (k1 + 24k3 + 3k3 + 8kg + 24ks)
k¢ = H-F (Xsy, Usn)




The formulas for the derivatives at t = 0 are given by

H-Fg = kg
H2-Fg' = (1/6) (- 5kq + 3k3 + 14kq - 18ks + 6kg)
H3 - Fo" = (1/9) (4k; - 4k3 - 19k4 + 30ks - 11kg) (26)

H4-Fo" = (1/9) (- ky + k3 + 7k4 - 12ks + 5k¢)

We note that the step size H for these calculations can be chosen completely independently of the
step size h that is used for subsequent integration steps. From Xg and its first four derivatives in

Eq. (25) we calculate X2 and the derivatives F2, Fy, F.1, and F.; from the following power series
formulas:

X, = X, + 2WH)(HE + 20VHY(H'Fy) + SHPHE,") + 30 (H'F ™)

= Fy + 20WH) (H'Fy) + 2(07H J(H'Fy") + 2(87H')(H'Fy ™)
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F, = F(X, Up @27
F, = F, - WHOHFy) « T E'Fy) - Le'ath at'p )
F, = Fy - 20WH)(H'Fy) « 2007H J(HFy") - 2 (6°H Y H'F ™)

The choice of step size H in the above Gear RK-4 startup equations should be made small enough
to ensure that truncation errors are negligible but not so small that roundoff errors predominate. In
our trajectory simulations we let H = /8.

Starting with the initial state X at the beginning of each stage, Eqs. (25), (26) and (27) are
used to compute X2 and the derivatives F, Fy, Fo, F.1, and F.3. For all subsequent steps in the
stage simulation, the SPAM-S integration algorithm of Eqgs. (22) and (23) is used. Since the time
denivative of the mass state M is the constant given in Eq. (11), simple Euler integration can be
used for that integration.

We recall that the SPAM predictor-corrector method uses a fixed integration step size.
Since the acceleration components given by Egs. (7) and (8) are proportional to the inverse of the
dimensionless mass M, it is clear that when M becomes small, the integration truncation errors will
become larger for a given integration step size h. However, the optimal solutions are unlikely to
permit the final M for each stage to become less than 0.2 to 0.3. Under these conditions the
performance improvement which would be achieved by using a smaller step size toward the end of
each stage burn is more than offset by the increased computational requirements associated with
integration methods suitable for a variable step size.

As noted earlier, we have found that the SPAM-5 method with the Gear RK-4 starter
provides accuracies of the order of one part per million when 20 integration steps per stage are
used. For a given mass ratio the burn time for each stage is determined by the thrust and hence the
initial thrust acceleration. The integration step size h for each stage is therefore equal to the stage
burn time divided by 20.




4. Constraints and Final Problem Formulation

To complete the statement of the optimization problem it is necessary to introduce certain
constraints on the trajectory and its defining parameters. The most obvious of these are the ones
required for target interception. After final stage cutoff, the payload must coast in such a manner

that at the specified intercept time, tr, the position variables, R(tf) and 8(tf), match those of the
target. . . e

There are severai ways to implement the intercept cornditions. We have imposed them
at the time of final-stage cutoff, tc. If R(t), 8(tc), R(t), and 6(tf) are known and the coast is an

out-of-the-atmosphere conic transfer, the values Y(tc) and V(tc) required for intercept are
determined by solving an appropriate Lambert problem. We do this numerically by the methods

given in [7]. The errors between the required and actual values of Y(tc) and V(tc) must be zero for
intercept and these conditions give two equality constraints on the trajectory at t = t.

We have found that unconstrained optimal conic coast trajectories re-enter the atmosphere
or-even pass through the earth's surface. To assure that this doesn't happen, the minimum altitude
during the coast is computed (as part of the solution of the Lambert problem) and specified to lie
outside the sensible atmosphere. The error between the computed minimum altitude and its
specified value forms, when set to zero, a third equality constraint.

In addition to the equality constraints on the trajectory, inequality constraints may be

imposed on some of the problem parameters. For example, an initial stage acceleration, A°T, may
have upper and lower limits, Amax and Amin. To avoid treating these constraints directly in the
algorithmic process, we impose them implicitly by introducing a nonlinear transformation of a new
parametric variable. In the case just mentioned a suitable ransformation is

0o AL tAn AL AL

A = > + 5 m“’sina_r | (28)

where aT is the new unconstrained parameter.
Putting all of the above details together in a compact notation yields a problem of the form:

minimize f(z) subject to gi(z) =0, i=1,2,3. 29)

Here: f(z) is the ratio of the launch mass to the payload mass, the gj(z) are the errors in meeting the
equality constraints, and z is a vector whose components are the "unconstrained” parameters
ansing from models described in Sections 1 and 2. Given z it is clear that f(z) and gj(z) may be

evaluated by integrating the equations of motion, computing M(tc), (tc), V(tc), R(tc), and 6(tc),
and solving the Lambert problem determined by the target specification.

Our algorithm for the numerical solution of (29) requires the gradient (collection of N
first partial derivatives) of functions such as f(z). While it is possible to derive formulas for the
partials (they may be written in terms of the differential equations adjoint to the linearized equations
of motion), they are exceedingly complex because of the nonlinear functions appearing in Eqs. (7)
- (1%). This motivates our desire to use finite differences for the gradient calculations.

S. Numerical Solution of the Optimization Problem

A variety of numerical approaches have been used to solve trajectory optimization problems
with equality constraints. These included: (1) gradient projection methods, (2) Newton-Raphson
solution of the necessary conditions, (3) penalty function methods. Approach (1) gives slow
convergence; approach (2) requires second derivatives of problem data and good initial estimates:
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approach (3) leads to badly conditioned (though unconstrained) minimization problems. We have
followed approach (3), attacking its disadvantage by using a rapidly convergent quasi-Newton
algorithm [8,9] and an augmented Lagrangian for the penalty function.

In the usual penalty function method approximate solutions of (29) are sought by
algorithmic minimization of

Fo(z) = f(z) + i ui[gi(Z)]2 (30)

ixl
It can be shown [8,9] that the equality conditions can be accurately enforced by choosing the

penalty coefficients, y; > 0, to be sufficiently large. In practice, numerical hazards, such as slow
convergence or convergence to false minima, are reduced by minimizing Fp(z) several times with
successively larger values for the penalty coefficients. At each successive stage the starting point
for the minimization algorithm is taken as the solution point from the previous stage. Even so, the
conditioning of Fp(z) worsens [8,9] as the L; increase and there is a practical limit to the accuracy
which can be achieved. Numerical errors in the minimization algorithm and the evaluation of Fp(z)
and its gradient eventually become limiting.

In the augmented Lagrangian approach Fp(z) is replaced by

FL(z) = f'(z) + ﬁligi(z) + 2;1.‘[&(2)2 (€))]

i=] iml

where the A; are real numbers approximating the Lagrange multipliers for the minimization problem
(29). When FL(z) is minimized it is possible to satisfy the equality constraints accurately with
much smaller values for the penalty coefficients (8,9]. The resulting improved conditioning of
FL(2) reduces the bad effects of the numerical errors. Again, it is advantageous to solve a

sequence of minimization problems with successive initializations, where in this case both the A;

and the y; are adjusted. We have used the adjustment scheme proposed by Powell and described
on page 134 of [8] with good results. It eliminates the need for human intervention in selecting the

parameters A; and y; and improves accuracy of equality constraints over the simple penalty
function approach by a factor of at least 10.

Because of the highly nonlinear character of Fi(z) and its poor conditioning it is
necessary to pay careful attention to the procedure for its unconstrained minimization. Certainly,
the second order properties of F () must be taken into account. We have found the BFGS, quasi-
Newton program of Shanno and Phua [10] to be effective. Its line search has been modified to
compute derivatives along the search direction directly by forward differences. This eliminates the
need for gradient evaluations during the line search.

The performance of a quasi-Newton algorithm is predicated on the smoothness of the
function being minimized. The function should be at least twice continuously differentiable. Here,
the representation of empirical data appearing in the equations of motion is important. See, for
example, the comments in Section 2 on computing the atmospheric density by table lookup with
linear interpolation.

Another concern is the forward difference computation of the partial derivatives of
FL(z). If the step size is too small, the effects of round off errors are exacerbated; if the step size is

too large, truncation errors become appreciable. If the machine precision is €, it can be argued (9]
that the step size should be the order of €V/2. In our case the machine precision € = 10-12 js

determined by the AD 100, which has a 40 bit significand. We have found that the step size 10-6 is
reasonable, but that experimentation with the step size can improve the accuracy noticeably. Even




better accuracy has been obtained by using central differences for the partial derivatives. It reduces
the effects of round-off errors because a larger step size may be used for the same truncation error
[9]. Of course, 2N + 1 evaluations of F1(z) are then needed to obtain F1(z) and its gradient.

6. Example of Optimal Trajectories

In this section we consider the results of a typical optimization case. 6(tg) - 8q, the total
change in polar angle of the trajectory, is set equal to 30 degrees. This corresponds io an
interceptor range of 2094 miles. The total time of interceptor flight is prescribed to be 300 seconds
and the target is intercepted at an altitude of 200 km. Stage takeoff weight is equal to 10,000 kg
and physical parameters are assumed to be similar to those of a Minuteman III. The specific
impuise Isp of the rocket engines is equal to 300 seconds, and the ratio of initial fuel weight to inert
weight for the rocket motor of each stage is assumed to be 10. The constraint on minimum aititude
during the final coast to the target is set at 60 km. The number of booster stages is equal to 4, with
equal mass ratios prescribed for each stage. The common mass ratio is therefore a parameter. As
noted earlier, the performance objective is to maximize the final payload weight. Two cases are
considered, one in which there is no coasting between booster stages, and the second in which
coasting is allowed. For the two cases the number of parameters to be optimized is 11 and 17,
respectively. The results are summarized below.

No coast between stages  Coast between stages

Final optimal payload weight 7.73 kg 8.7 kg

Mass ratio per stage 4.12 4.05
Minimum altitude in final coast to target 59.52 km 60.06 km
Burnout speed (V¢ = circular orbit speed) 1.724 V¢ 1.707 V,
Minimum altitude in final coast to target 59.52 km 60.06 km
Burnout altitude 134.65 km 1189 km
Burnout time 91.43 sec 98.88 sec
Launch flight path angle, yp 64.05° 64.570
Initial acceleration and total burn time, stage 1 11.86g, 19.16sec 1271 g, 18.30sec
Coast time between stages 1 and 2 8.90 sec
Initial acceleration and total burn time, stage 2 12.49g, 18.18 sec 2531g, 8.80sec
Coast time between stages 2 and 3 8.85 sec
Initial acceleration and total burn time, stage 3 499g, 45.54sec 29.08g, 7.71sec
Coast time between stages 3 and 4 39.92 sec
Initial acceleration and total burn time, stage 4  26.58 g, 8.55 sec 35.39g, 6.39sec
Coast time to target 208.57 sec 201.12 sec

Note that the optimal payload for the case where coasting is allowed between booster stages
is somewhat greater than for the no-coast case. In both cases the time for the third stage is much
longer than the time for the other stages. For the no-coast case this results in a long burn time; for
the coasting case this results in a long post-burn coast time.

The accuracies in meeting the constraints on Y(t¢) and V(t.) in the above two cases were
approximately 0.0005 radians and 1 meter/sec, respectively. The differences in the minimum
altitude during the final coast to the target for the two cases, compared with the specified constraint
altitude of 60 km., can be observed directly. Additional inequality constraints were imposed on
many of :he parameters using the transformation technique illustrated in Eq. (28). None of these
constraints turned out to be active in the example.
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On the AD 100 the execution time per 20-step stage integration, thrusting or coasting, is
approximately 0.6 milliseconds. To illustrate typical overall AD 100 computational times, consider
a 4 stage trajectory with 3 coasts. This requires 17 parameters to be optimized. To compute the
cost function and its 17 gradient components takes 18(7)(0.6) = 75.6 milliseconds. Additional
trajectories will be needed for each iteration to solve the line search problem, so that 90
milliseconds represents a reasonable value for the average AD 100 time required per iteration. The
approximately 200 to 400 iterations needed for satisfactory convergence to an optimal solution then
require 18 to 36 seconds of AD 100 time. To these times we must add the time required for the
VAX to implement the optimization algorithm for each trial, which in general increases the average
overall time per optimization to several minutes.

7. Conclusions

In this paper we have considered techniques for determining the optimal trajectories of
earth-launched interceptor rockets which are accelerated to over twice orbital velocity. The
objective of the optimization is to maximize the payload with a given interceptor takeoff weight.
Terminal constraints have been enforced using penalty functions. The required gradients of the
cost functions have been computed numerically using finite differences. We have shown that use
of a special multiprocessor computer, the AD 100, in conjuaction with a VAX host computer, can
reduce very substantially the time required for each trajectory optimization. Utilization of a 5th-
order single-pass predictor-corrector integration method with a Gear RK-4 startup algorithm for the
trajectory integration also has contributed significantly to the reduction in time. Typical AD 100
computation times for each 5 to 7-stage trajectory range between 3 and 4 milliseconds. For an
overall optimization requiring many thousands of trajectory calculations this translates into a total
solution time of minutes, compared with hours when the VAX alone is used.

Some preliminary results have been presented for a 4-stage example. It is found that
allowing a coast period between booster stages improves the optimal payload significantly. Future
research efforts will include parametric studies of the effect of different prescribed flight times,
target range and altiitude, payload mass, refined aerodynamic and propulsion models, and aero-
assisted midcourse maneuvers.
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Abstract. This paper considers the problem of minimum-fuel interception with time
constraint. The maneuver consists of using impulsive thrust to bring the interceptor
from its initial orbit into a callision course with a target which is moving on a well
defined trajectory. The intercept time is either prescribed, or is restricted to be less than
a upper limit.

The necessary conditions and the transversality conditions for optimality were dis-
cussed. The motied of solution amounted tr first solving a set of equations to obtain
the primer vector for an initial one-impulse solution. Then based on the information
provided by the primer vector, rules were established to search for the optimal solution
if the initial one-impulse trajectory was not optimal. The mothed is general in the sense
that it allows for solving the problem of three-dimensional interception with arbitrary
motion for the target.

Several numerical examples were presented, including orbital interceptions and inter-

ception at hyperbolic speeds of a ballistic missile.

Key Words Orbital transfer, optimal interception, primer vector theory, hodograph the-

ory, Lambert’s problem, interception of ballistic missile.




1. Introduction

The two problems of interception and rendezvous with time constraint are two fun-
damental problems in space maneuvering. We shall consider the first problem in this
paper. In the following content, the notations with bold faces represent vectors, the no-
tations with plain faces stand for the magnitudes of the corresponding vectors and scalar

variables. The product of two vectors is understood as inner product.

The interceptor is initially in a motion defined by its position vector ry(t) assumed
known. At a certain time ¢, called acquisition time, or sometimes initial time, the target
is at the position rr(t;) with velocity Vp(¢p) assumed known. Hence, if its subsequent
motion is uncontrolled and is only subject to a Newtonian gravitational attraction, it is
well determined by the two functions rr(t) and Vr(t) which can be computed from the
given data. It is proposed to intercept the target at a final time t; > t; so that the
characteristic velocity required for the transfer is minimum. The specific assumption on

to and t, will be given later when we consider the different types of interception.

It should be noticed that, for the sake of generality, the function ry(t) can be com-
pletely arbitrary. It may represent an orbital Keplerian motion for the interceptor, or an
atmospheric ascent trajectory for a rocket or an airplane which carries the interceptor.
Likewise, we can simply assume that the function rr(t) defining the inotion of the target
is known. On the other hand, we shall assume that, in the time interval [¢,,¢;] where ¢,
to < t; < ty, is the instant of the first ignition of the control engine, the interceptor is

only subject to the inverse-square force field and a controlled action of a propulsive force

F.

2. Necessary Conditions for Optimality

We consider the general problem of transfer. A rocket, considered as a mass point




-

with varying mass is governed by the equations

r=Y,
V=g+T, (1)
U=T,

where g is the acceleration of the gravity, a function of the position, U is the characteristic

velocity spent since the initial time

U= /: Tdt, (2)

with I = F/m being the thrust acceleration. For a high thrust propulsion system, U is
a measure of the fuel consumption.

Consider the Hamiltonian of the system

H=p,V+pv(l +8) +pol, - (3)

where the adjoint variables p,, pv and py satisfy the equations

. __8H
p' g —’
. __OH _
" — —2—
Pv=—"350"

To maximize H with respect to the control vector I, we first maximize the product

pvI. Then I’ must be selected parallel to py and hence

H* =p,V +pvg+ (pv + pv)T, (5)

where py is the length of py.

The thrust acceleration is now linear, subject to

0<T <Tpas (6)




Consider the switching function

K= py + Py. (7)

Then, if
k>0, select T =TIp,s (Boost arc),

k<0, select T=0 (Coast arc),

K

0, select T = variable (Sustained arc).

We have Lawden’s optimal law for the thrust control (Refs. 1 and 2):
— Whenever the engine is operating, the thrust direction is parallel to the vector pv,

called the primer vector.
— If x > 0, we use I' = T 144, while if £ < 0, we use I' = 0. The thrust is switched on
and off at £ = 0.

The problem is solved if we know the time history of py and the switching function
x. For example, if we plot the function x versus the time, we have the typical variation
as in Fig. 1. We use the maximum thrust directed along py between ¢; and ¢; and then
between ty and ¢,. The remaining arcs are coast arcs. Of course, the terminal conditions
must be satisfied. For very high thrust, we can use the approximation [mss — 00. The
time interval At for each boost arc tends to zero and we shall have the typical variation
of x in Fig. 2. The thrusting phases are approximated by the impulses I} and I;. For
impulsive thrust, by changing the independent variable from t to U, it can be shown that,

across an impulse, the functions r(t), g(r), p, and py are continuous (Ref. 2). On the

other hand, we write

I N 13
I'mas pv pv

dav
daUu
Hence, integrating across an impulse, we have the discontinuity in V
Pv
AV = V, - Vl = (—)AV,

pv

where AV is the characteristic velocity change across an impulse.
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The adjoint py satisfies the equation
oH* J ..
pv ——a"U— —w[r IC].

On a coast arc, ['* = 0, and on a sustained arc, x = 0 and we have py =constant. But on
a boost arc, with I'* = I',,,4(U), we consider the equation for the variation of the mass

dm F’M’ — _mrnuu

dt e ¢

where ¢ is the constant exhaust velocity for a high thrust propulsion system. By inte-

grating the equation, we obtain

U
m= moexp(—:).

Hence
_ Fonas _ Frnas U
Tmas(U) = = e exp( c).
The adjoint equi. .on for py becomes
. Fmaz
pv = — .

c
Since x > 0 on boost arc, py is decreasing along a boost arc. For the case of infinite

thrust, since across an impulse, U has a finite variation, we write

dpy _ &

dUu ¢
Across an impulse, « = 0, and hence we also have py =constant. We conclude that, in
the impulsive case, in the closed interval [¢o,t/], py =constant and from the transversality

condition in the next section
pv = puy = —1.
It is then sufficient to consider py on coast arcs for impulsive thrust since we have
K = pv + py < 0, therefore py < 1 on the interval [to,¢].
The solution for py on a coasting arc has been obtained by Lawden for a Newtonian

central force field in Ref. 1 and by Vinh for a general, time invariant force field in Ref.

3.




Along a coasting arc, we consider a rotating coordinate system MSTW with M at
the rocket, the S—axis along the position vector, positive outward, the T—axis in the
plane of the motion, orthogonal to the S—axis and positive in the direction of motion
and the W —axis completing a right-handed system as shown in Fig. 3. Notice that 9 is
the true anomaly measured from the perigee of the osculating orbit.

Let S, T and W be the components of the primer vector py. We have (rcef. 1)
S = Acosf + Besind + C1I,,

(D - Asin®8)

T =—-Asind + B(1 + ecosb) + T ecoad

+ C1,, (8)

Ecos8 + Fsiné
W =
1+ ecosd

where

1 2e » .
= [~ cos 0+ — = _ 3, [Bqe2
I (1—e3)[ cosd + T+ ecoad 3 p,tc sin 8],
__ rcosé p - )
™ epsind  ersind

Here u is the gravitational constant and e is the eccentricity of the ballistic conic with
semi-major axis @ and semi-latus rectum p
p=a(l-e?) elliptic,

10
p=a(e? ~1) hyperbolic. (10)

It is important to notice that in Eq. (9) ¢ is the time since the passage of the perigee.
The coefficients A, B, C, D, E and F are constants of integration to be determined.
For the analysis, we also need the components of the adjoint vector p, = —py. On

the rotating axes, we have the components of the derivative of py

& ,/u.p[Asino—D
T 2 "1+ ecosd

-B+ CIS]a
T = ‘/5[—A(e+cosa)+Desin0+CC°89], (11)

Vo= [ LIF(e c — Esin
W—\/—p—s[F(+osO) Esind),




where
esin?@ — cos 8 I,
s = . 3 - . . (12)
esind(1 + ecosf)? esind

We conclude this section with a clarification on the constant C. In a time-invariant

force field of attraction, the Hamiltonian is constant and we write equation (5)
H =p,V+pyg+I's=C

Since the equation is valid over the whole optimal trajectory, it suffices to evaluate the
constant on a coast arc with I'* = 0. Lawden’s solutions for py and p, = —py as given in
equations (8) and (11) apply separately for each coast arc, with § = 0 and ¢ = 0 at the
perigee of the transfer orbit. When connecting several arcs by impulses, the constants of
integration A, B, ..., F and the time ¢ have to be accordingly adjusted. In particular,

using the equations (8) and (11) for pv and p,, with the components on the MSTW

V= (\/—geaino, @, 0),

g= (—%’ 0’ 0),

system

by substituting above equations and (8) and (11) into Hamiltonian, we arrive at

where C = H* is the global constant, and C is the constant on each coasting arc with

eccentricity e and semi-latus rectum p. For this reason whenever H* = 0 we simply take

C=0.
Across an impulse the term I'*x has the indeterminate form oo x 0. But this term
is zero before and after an interior impulse since we have then either a coasting arc or a
sustained arc. Hence, since p, and py are continuous across an impulse
H” =p,V +pvg=p, V' +pvg = H'*.

Because I'* is parallel to py, so is AV, hence

vt =v-4+ B,y
Pv




From the two equations above we obtain

PPv = 0.

Hence pvpv = pvpv = —pvP, = 0. It follows that x = & = O for an interior impulse as
shown in Fig. 2. As pointed out by Lawden, this is not necessarily true at the end points
to and t; if an impulse occurs there. This leads to the fact that ['*x = 0 for an interior
impulse and H* = p,V + pyg in the entire open interval (to,t,).

3. Transversality Conditions
In general, the acquisition time and states, the final time and states, may be con-
strained to satisfy a certain relation of the vector form
ﬂ(ro, VQ, to,l’,, V,, tl) = 0. (13)
For instance, in the interception problem one of the equations in (13) will be
ry =rr(ty). (14)

Equation (13) leads to a number of transversality conditions which must be satisfied by
the states and the adjoint variables at the end points.

In the following application of the maximum principle, we adopt the Pontryagin-
Contensou convention of maximizing the Hamiltonian for a minimum of the characteristic
velocity. Hence the performance index to minimize is J = I';, which is equivalent to the
maximization of the final mass for impulsive propulsion system. Let I be the augmented
function

t . .
I=J+ f (Bs5 + pvV + pull — H)dt, (15)
)

where H is defined by (3). Then besides the necessary conditions in Section 2, for a

stationary value of I, we must have the variation

61 =6J + {p,6r + py6V + ppéU — Hét)] = 0, (16)

9




10

with all the variations satisfying 603 = 0. This is called transversality condition. The

constraint imposed at the end points in the form (13) renders the problem more difficult,

more challenging to solve. We shall examine some realistic and practical situations.
First, since Uy is arbitrary, 6U; in (16) is arbitray and independent. We have py; =

—1 for 8J + pys6U; = (1 + pys)6Uy = 0. The transversality condition is reduced to
61 = (p,6r + py6V — Hét)] = 0. (17)

Following Ref. 2, with some modification, we explicit (17) in the following cases of

interest.
Since for an interception problem, the final velocity V, is arbitrary, we have the

condition py, = 0. The last arc is a coasting arc, hence I'*(t;) = 0. Consequently
B} =p, sV, (18)
If the initial time 2o, ro and V, are fixed, (17) becomes
Prsbry — H;6ty = 0.

The condition is trivial if ¢/ is fixed. If ¢, is not prescribed, constraint (14) requires that

éry = Vr,6t, and we have the orthogonality condition

p,,(VT, - v,) = (. (19)

It should be noted that from (18) and (19) the Hamiltonian is not necessarily equal to

zero because of (14) even if t; is free in this case.
Another practical constraint is that t; < t; < T for some T > to with to, ro and V,

specified. If an optimal t; < T can be found, (19) remains valid. Otherwise t; = T, the

transversality condition is modified as (Ref. 4.)

Pry(Vr, - V) =a, (20)
with a being a multiplier.

10
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In the case when ¢, is free and no impulse occurs at to, 6o = V;6tg, 6V, = g6,

the transversality condition is simply

H; = p.oVgs + PvaBo-

Suppose an optimal ¢j is found and the first impulse on the optimal trajectory occurs at
t; > t3. The impulse is an interior one and therefore p,(t;)pv(t1) = 0. Apparently any
t < t;, in particular, ¢, can also be taken as optimal initial time because [to,¢,) is a coast
period. On the other hand, if t; = ¢, any t < t; can also be optimal initial time provided
that the optimal control for the interval {t,t,) is taken as zero. In conclusion, when t; is
free, we can always take tj as the point where the first impulse occurs and accordingly
p-(t3)Pv(t3) = 0. Note that in choosing to do so the relation p,(t3)pv(t3) = O replaces
H§ = proVg + Pvogo.

Finally we consider the situation where r, is fixed but not the final time t,. This

amounts to considering the target as fixed. In this case we have trivially H; = 0, that is

C=0.

4. Method of Solution

From the discussion in the preceeding sections we see that the primer vector py
plays an essential role in finding the optimal solution. In this section we shall present
an analytic method to obtain the primer vector on a one-impulse trajectory. Based on
the information provided by the primer vector, we shall show that if this one-impulse
trajectory is not optimal how it can be improved to approach the optimal solution.

We consider the general three dimensional case. Let t; be the initial time. We
initiate the interception by application of an initial impulse at ¢t,. The initial position is
ro = ro(to) and the initial velocity is V5 = #o(to). At the final time t;, let r, = rr(t;)
be the final position. Notice that for any given ¢, and t;, we can evaluate ro and ry, and
consequently the transfer angle A as well as the initial velocity V; before the application

of the impulse. Figure 4. displays the maneuver by one impulse changing V; into V4. All

11
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the elements are now evaluated along the transfer orbit, which is well defined after solving
the associated Lambert’s problem. In this respect the numerical scheme developed by
Battin in Ref. 5. proves very efficient. Since V5 and VJ are known, we can compute the
required impulse AV, and hence py(to) = AVo/AV,.

Explicitly, if the initial motion of the interceptor is Keplerian, let ¢, and po be the
eccentricity and semi-latus rectum of this orbit and f, the true anomaly defining the
position ro as measured on this orbit. After the impulse we have the corresponding
elements e, p and 8, of the transfer orbit obtained by solving the Lambert’s problem. Let
i be the angle between the initial orbital plane and the plane of the transfer orbit. Then,
if u, v and w are the components of the impulse AV, in the MSTW system attached to

the transfer orbit, we have

u= ﬁ(-‘—moo - = 4in Jo)s

e 7 |
v=%§(\/5—\/ﬁcoai), .(21)

zﬂpo . .

w= sins.
To

The characteristic velocity for the transfer is

AVo = Vul + v + wi. (22)

Since py is a unit vector in the direction of AV, its components S, T and W are its

direction cosines and we have explicitly

u v w
S=-—=, T=-, W=-—.
AV, v VT A

(23)
By writing Eq. (8) with t = ry and 8 = 8,, where 7, is the time corresponding to 6o on the
transfer orbit (r = 0 where § = 0), we have three linear equations for the six constants
A, B, ..., F. For the interception problem the final velocity is free hence py(t;) = 0
as pointed out in Section 3. Then by writing Eq. (8) with t = r, = 75 + (t;, — t,),

0 =0y, = 0o + A and putting S; = Ty = W, = 0, we have three more linear equations for

12
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evaluating the unknown constants. In particular, from the last equation in Eq. (8) we

btai
obfain E=pWsin0,
foSinA ’
F=_chon,. (24)
rosin A

For the rest of the unknown constants, C is obtained from

C =

Q=

, (25)
where
p . A
N = (=)T + S(esinfp — 2tan —),
o 2

_ [1+¢€*+2ecosfy — 2esin by tan A /2

¢ esindysind,

[11(ro) sin 8, — I1(r) sin 8] (26)

sin A

esinfysind,’

A, B and D then are solved from the following

Asin A = Ssin8; — C[Iy(r,) 8in 8, — I,(r;) sin 6,), (27)
Besin A = —Scos 8y + C[I (o) cos 8, — I;(r7) cos §y), (28)
. _ [2¢ + (1 + €?) cos 8] . _ i cosf, .
DesinA = —C( snd, (I1(70) sin 8y — I1(7/) sin o] + sn s, sin A)

(29)
+ S[2e + (1 + €?) cos 8y).

With the constants evaluated, we can use Eq. (8) to calculate the magnitude of the

primer vector along the transfer orbit

pv(t) = VSI+ T2 + W3, (30)

In the computation, the time ¢ can be computed from Kepler’s equation

M%t:E—esinE, (31)

13
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where at a little risk of confusion with constant given by (24), here E denotes the eccentric

anomaly such that

[} l+e E
tan-z- =Vicz ctan?. (32)

Once the magnitude of the primer vector is computed by above procedure, three
types of typical behaviors of py(t) are plotted in Fig. 5. They are representative, if
not exhaustive. In the :ase (a), all necessary conditions are satisfied, the one-impulse
solution is thus a candidate of optimal solution. Although in the following sections we
shall see that this is the case for many realistic geometrical configurations of interception
and reasonable interception time At = t; — ¢y, it is not conclusive so we can not exclude
cases (b) and (c). In both of these cases the proposed one-impulse interception is not
optimal. However, the following arguments show that for case (b) a coasting arc prior to
the application of the impulse will reduce the cost and hence the optimal solution conéists
of an initial coasting arc. More than one impulse are needed for optimal solution for case
(¢).

First, from calculus of variations, the first order variational §I of the augmented

function (15) is obtained from two neighboring trajectories which satisfy equations of
motion (1) and end conditions. But by (15) it is straightforward that if the equations
of motion is obeyed the integral in (15) yields zero, thus any variation in I is variation
in J, namely 61 = §J. By expression (17), only considering the change in cost due to

initial variations because they are independent of the final variations in an interception

problem, we have the variation in J

8§J = 61 = —pyobVo — Probro + Hi bto. (33)

where ”+“ sign indicates the right limits of involved functions. Since Hf = p, oV +
pvovo, Vobto = 6V, and érg = Vg 6to, where \"3’ = \.’(',' is assumed, which is generally

true if ro(t) is Keplerian motion, Eq. (33) leads to

6J = p,o(V;f - V;)&to = p,oAv°6to = AVop'opvosto. (34)

14
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For 6to > 0 we see that §J < 0 if —p,oPvo = pvopvo = pvo > 0. In other words, if the py

exceeds unity immediately after ¢, as in case (b) an initial coast will reduce the cost.

As for case (c), suppose that T is the trajectory defined by r*(t) with an initial

impulse at ¢o; T’ is a neighboring trajectory, defined by r(t), which passes through r*(to)

at to and r*(ty) at t; with one initial impulse at ¢, and a mid-course impulse at some

tm € (to,ts). According to Ref. 6. such a trajectory can always be constructed provided

a nonsingularity condition is satisfied. Along T"
I(tm) =5 + 62 p,
P (tm) =t + 6V,

Fr(tm) =F5 +6V7,

AV = it(tn) — # (tm) = 6V — 6V,

Also
Bt (to) — #7(to) = [#°(to) + Vo] —#'~ (o)

= AVo+ 6§V,

where 6 stands for the small va.ria.tiong from T.

Coston T

J= AVo.
Cost on T
J'=|AVo+ 6V + |6VE -6V
To the first order, the difference is

AV,

6T =J—17
~ Av,

6Vo + |6V — 6V
Since pv(to) = AV()/AVQ,
6J = pv(to)&Vo + |6V,*,’. - SV;I.

15
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By a property of adjoint variables it is known that along T

p,Or + pvéV = constant.

In particular
Pr(t0)6ro + Pv(t0)6Vo = Pr(tm)éTm + Pv(tm)6 V¥,

Po(t1)68 s + Py (t,)6V s = Pr(tm)6Tm + Py (tn) 6V (36)

Noticing that py(t;) = 0 and éro = éry = 0, we add a vanishing term —py(t;)6V, to
(35) and with the aid of (36)
6J = pv(to)ﬂ’o - pp-(t,)GV, + |6V,*,; - 6V;|

= —pv(tm)(6VE — 6V7) + |6V — 6V

Let d be the unit vector in the direction of AV,,,
8J = AVp(1 — py(tm)d). (37)

Therefore if there exists a t,, € (to,¢;) such that py(tm) > 1, a mid-course impulse can
always be selected so that 6J < 0, the greatest descent is when py(t,) is maximum and
d is in the direction of py(¢m).

Note that in Ref. 6. a proof has been given to a two-impulse trajectory which states
that if py > 1 between two irapulses a mid-course impulse can reduce the cost, while some
modification is adopted in the above treatment for our specific objective of interception.
Combining the two results, we have the rule tc search for an optimal multi-impulse

trajectory, if necessary, by starting with a simple one-'mpulse solution.

5. Interception at Elliptic Speeds

The necessary conditions in Section 2, and the computation of the primer vector
in Section 4 are perfectly general, that is, it is applicable to a minimum-fuel three-

dimensional interception problem, for any given pair of arbitrary functions ro(t) and
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rr(t) describing the initial motion of the interceptor and the motion of the target. If
ro(t) is non-Keplerian, it is sufficient to replace in Eq. (21) \/;T/Eeo 8in fo and |/zp,/r,
by the components on the S and T axes in the initial plane of the current velocity V;.
The explicit transversality conditions derived in Section 3, while they allow arbitrary
motion of the target, specify that the initial motion of the interceptor is Keplerian. With
slight modification, we can derive similar conditions for arbitrary ro(t).

To reduce the number of parameters involved in the examples in this section, we
consider the initial orbit of the interceptor as circular and take ro = 1 as the unit distance.
By taking the gravitational constant g = 1, the characteristic velocity is normalized
with respect to the circular speed at the distance ro. Then 2x is the dimensionless
orbital period of the interceptor in its initial orbit. Although the dimensionless time and
distance are used, to havé a physical understanding of the results obtained, from time to

time we shall choose some Earth’s orbits of particular altitudes in kilometers as reference

to interpret.

Problem 1.

The target is in an inner coplanar circular orbit at distance r,. The initial time is
preset, without loss of generality, equal to 0. This is the same as specifying the angular

distance w at the time ¢, (Fig. 6.). The final time ¢, is subject to constraint
ty <P, (38)

where P is the period of the target orbit. Alternatively, it is required to intercept the
target before it completes another revolution. By the explicit transversality conditions

in Section 3, if an optimal t; < P can be found, Eq. (19) should be met, i.e.
Prs(Vry— V) =0. (39)

Otherwise, if t; = P, Eq. (20) holds. It should be noted that if (38) is not present,

the problem may have an optimal solution with t; > P. As we shall see, after (38) is
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reinforced the constrained optimal solution does not necessarily take t; = P, depending
on the initial lead angle w. Of course the unconstrained optimal cost is generally better
than the constrained optimal cost.

To solve this problem, we apply the technique disscused in Section 4. An initial
impulse is to be applied at t,. We take the transfer angle A between r; and a trial r, as

parameter. For any given A we can compute the time of flight from

\/gt ;= rsw+4). (40)

After solving the associated Lambert’s problem, the direction and the magnitude of the
corresponding initial impulse are known. We can evaluate the constants in (8) bysthe
method presented in Section 4 and then compute py and p, by (8) and (11). To a
solution with ¢} < P, (39) is used for iteration to determine the correct A, and hmc; t,
from (40). Although all transversality conditions py(¢;) = O and (39) are satisfied, for
the solution to be optimal py(t) must be of case (a) in Fig. 5. Figures 7(a) and 7(b) show
the variations of py(t) for w = 20° and 34.78°, and py(t) for w = 50° (in solid line) is in
Fig. 7(c), with ro/r; = 1.25. For the first two w’s the one-impulse solution is optimal and
the optimal launch time coincides with to = 0. Notice that py(0) = O for w = 34.78°. The
correspondirig A angles are 225.76° and 180°. The dimensionless final times are 3.071 and
2.684, the dimensionless characteristic velocities are 0.07139 and 0.05719, which for an
initial interceptor orbit with an altitude of 2,000 km, they translate into 62.14 minutes,
54.31 minutes, 0.493 km/sec and 0.394 km/sec respectively, while the period of the inner
orbit is P = 90.97 minutes. But in the case w = 50° the solution is not optimal. By the
analysis in Section 4 we know that the behavior of py(t) plotted in solid line in Fig. 7(c)
suggests a coasting arc prior to the application of the impulse. To have more insight, we
look at the case where w = 34.78°. This lead angle is special in the sense that a tangential

retrograde impulse is optimal and the transfer angle A is exactly x, i. e. , a Hohmann
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type transfer. This special lead angle is given by

w' = x[‘ [ %(l + :—:)‘ -1J. (41)

When the initial w is greater than w*, the optimal strategy for the interceptor is to coast
on the initial orbit until w* is formed due to relative motion then launch. The coast time

is computed from

tl = &)—;1—"‘)2. (42)

where (1 is the relative angular speed

0= \/% - \/:ﬁ;
After such a coast arc is added, the variation of py(t) for w = 50° is shown in Fig.
7(c) in dashed line. The optimal characteristic velocity is the same as in the case when
w = w"* = 34.78°, the final time is 67.83 minutes and the coast time is ¢; = 13.52 mnmtes
Taking into account the constraint (38) and the fact that the Hohmann type transfer

requires A = x, we can easily have the range of initial lead angle w within which the
Hohmann type optimal interception is possible

1 1 2
e w< = ~ys_ % 43
w'<w< x| 8(1+n) ,—-ns+1], (43)
where n is the ratio
To
= e, 44
n=_ (44)

Whenever w is within range given by (43), the optimal characteristic velocity is the same

av = B _ [ (45)
o ro(ro + ry)

When 0 < w < w*, we found that the initial one-impulse solution is always optimal, and
always t; < P. When w exceeds the upper bound in (43) and is less than about 127°,
we found that an initial coast is still needed, but of course is not given by (42) and the
impulse is no longer tangential. Morever, t; = P, thus condition (20) applies instead of

(19). When w is larger than about 127°, no initial coast is optimal and t}; = P.
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The dimensionless optimal characteristic velocity for different w ranging from 0° to
180° is plotted in Fig. 8. It is seen that AV depends on the lead angle w and can be
prohibitive for large w. This dependence is due to constraint (38). If t; is free, the
interceptor can always stay on the initial orbit and launch when w* is formed no matter
what initial configuration at ¢, is. The Hohmann type interception is then performed
and the characteristic velocity is always the same, only depending on n. The launch time

0 < t; is explicitly
_J (wo —w*)/03 if wo > w*,
= { 2x + (wo — w*)) /s if wo < w°. (46)
where wy is the initial lead angle, and w* is defined in (41). It is a simple exercise to show

that the Hohmann transfer satisfies the conditions
P-(t2)pv(t) =0, {

De(ts)(Vag — V) =0. (48)

For Hohmann transfer V, is parallel to Vy,. Then (48) is equivalent to H; = p,yV; =0,
hence C = 0. If furthermore

A=0,
l—e¢e
B= 4e ’ (49)
(1 —
D=_(1+e) (1 e)‘
4e
where
e_n-—l
T n+1’

then since 8, = 180° and 8, = 0° on the transfer orbit, we see that py(t;) = 0 and (47)

holds. In addition, S(¢;) = 0 and T(t)) = —1, which is the characteristic of Hohmann
transfer. But since C = 0, from (26) N = 0 hence




21

From (27)
A= l sinO,
" ro4sin’A/2’
poR_ob
ro4esin® A/2
D= _p[2e+(1+e?)cost]

To 4esin’ A/2

Let A = 180°, 8, = 0° and p/ro = 1 — ¢, we have (49).
Problem 3.

When either or both orbits of the interceptor and the target are elliptic, the basic
technique and analysis remain applicable though there may be no explicit relations like
in the case of two circular orbits. If the intercept time is constrained by (38) the optimal
solution is also expected to show dependence on the initial configuration.

Let us consider the case where the interceptor is still in a circular orbit defined by
ro = 1, but the target is on an inner coplanar elliptic orbit with eccentricity ey and semi-
latus rectum pr (Fig. 9). It should be noticed that although the orbits are well defined
geometrically by the quantities ry, er and pr, the motion with respect to the time on
these orbits can be arbitrary. We assume these motions are known. That is, at ¢, let n
be the lead angle of the interceptor with respect to the perigee of the target orbit, w be
the lag angle of the target with respect to the perigee. Both n and w are known. For a
given 7, different w represents different initial configuration.

As for numerical example, we consider a target orbit such that er = 0.2, pr = 0.6
and select the time ¢, such that n = 30°. The angle w is taken as a varying parameter.
The method of solution is similar as described in Problem 1, with the flight time t, — ¢,
for a transfer angle A evaluated by Kepler's equation along the target orbit, instead of
(40).

The verification of function py(t) against the discussion in Section 4 reveals that for

a given n there exists an w,, in our case w, = 101.008°, such that when w < w, the initial
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one-impulse solution is optimal. A coasting arc is needed for optimality when w > .
Furthermore, in our case for 148.4° < w < 176.6°, t; = P = 3.1046 with a coasting prior
to the impulse. For w > 176.6°, t; = P without coasting. Figure 10 gives the variation
of optimal AV vs w for 0° < w < 160°. It should be noted that in the present situation
the optimal characteristic velocity shows stronger dependence on w as in Fig. 10, unlike
in Problem 1 where w in a certain range yields the same AV. There exists a overall
optimal AV corresponding to w* < w,, in our case w* = 98.437°. The special aspect of
the optimal solution for w* is that the optimal transfer trajectory tangentially intersects
the target orbit at the intercept point. We shall show that this particular trajectory
is also the minimum fuel transfer trajectory from the position ro(to) to the target orbit
without considering interception.

Because of the tangency of two orbits, Vr; is parallel to V,. Transversality condition
(19) is equivalent to H; = p,;V; = 0. Hence C = 0 and N = 0. From (26) we have

PT 4 S(esinfo - 2tan2) = 0, (50)
o 2
where S and T are the components of py(to) which are proportional to

1 A
(1 + ecos )1 - \/I_T-C_TG—%] = esin00(2ta.n§- — esin §;). (51)

In deriving (51) we have used the polar equation

2_ 1+ ecosby

To

to eliminate p. Next, by writing the condition for collinearity of the two vectors

vV, = (‘/ﬁesinh,@),
p Ty
VT, = ( —‘iersin(n + A),@),
VPT ry

we have

(%)(1 + ecosfp)ersin(n + A) = esin(fp + A). (52)
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Finally we express the equality of radii on the two orbits at t; as
(;—:)(1 + ecos 8)[1 + ercos(n + A)] =1+ ecos(fp + A). (53)

The three equations (51), (52) and (53) can be solved for the unknowns e, 6, and A°.
The angle w* can then be deduced from the Kepler’s equation.

The problem of finding a minimum fuel transfer orbit from a given position with
one impulse to a given orbit is in the area of parametric optimization. We consider
the problem of minimum fuel transfer from the position ro(to) to the target orbit by
following the hodograph theory presented in Ref. 7. We look at the condition required
for the velocity V(to) after the impulse for leading the transfer trajectory to a point on
the target orbit at the down range angle A with radius r;. Let z and y be the components
of the normalized velocity V(to)/\/u/ro on the M ST system. On the transfer orbit with

eccentricity e, semi-latus rectum p and true anomaly 4, we have

o . esinoo
z= ‘/—esmoo = =
P v1+ ecosby

(54)
y= rﬂ = /1 + ecos .
V ro
At the final point
yr = ~— PTo = :2[1 + CCOS(OO + A)]. (55)
ry p
Let
n==2 (56)
Ty
From (54)-(56), we have the equation for z and y in the M ST system
(n —cos A)y* +sin Azy — (1 —cos A) = 0. (57)

Equation (57) shows that the tip of the velocity V(¢,) must be on a hyperbola with
asymptotes MS and MM, (Fig. 11). Since the initial normalized velocity has the

components (0, 1), the minimum AV corresponds to the shortest distance from this point
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to the hyperbola (57) for prescribed ry and A. When r; varies as a function of A (Fig.
9), we have a family of hyperbolas defined by

f(z,y,4) = [;—;(1 + ercos(n + A)) —coe Aly? +sin Azy — (1 — cos A) = 0. (58)

This family of hyperbolas has an envelope which is obtained by eliminating A between

(58) and equation 3f/3A =0
[sin A — g-er sin(n + A)]y? + cos Azy —sin A = 0. (59)
After elimination of A between (58) and (59), we arrive at
ay*+z?+2B8zy+4=0, (60)

here a=1+ (2)-)’(e2 -1) - 2% cosn
pr’ T pr ’

__To .
B = -p'—Tcr sinn, (61)

¥= 2[10—(1 + ercosn) — 1].
pr
Since 8% — a > 0, the curve (60) is also a hyperbola. The terminus of the optimal velocity

V(to) must be on this envelope. The shortest distance from the point (0,1) to (60) is
obtained by solving (60) and the equation for orthogonality

z y—1
= . 62
z+Pfy ay+pPz (62)
If we use an auxiliary variable z
T esin d,
== — 63
2 y 1+ecosby (63)
by combining (60), (62) and (63), we obtain a quartic equation in z
AQZ‘ + Alz’ + Azl’ + A;z + A4 = 0, (64)
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where R
A0=1+’7ﬂ )

A, =48 -28~4(1 - a),

Az =a+58+1((1 - a)? - 287, (65)

As = 2a8 + 26° + 26+(1 - a),
Ay= ¥ a+1).

Upon solving (64), the components of the optimal V(¢,) are

_ (z+8)z
B2+ (a—1)z -4’
_ (z+8)
Bz3+(a-1)z-p’
From (59) and with the aid of (60), (61) and (63) the optimal transfer angle is

z= (66)

y= (67)

A o

ta.n? = —m.

(68)

To compare the above results with the results from optimal interception, we first
notice that using definition (54) to expand (53) leads to (58). Likewise (52) directly
yields (59), consequently (60). Finally, using (51) and (52) to eliminate A, after some
algebraic manipulation, the quartic equation (64) is recovered.

We conclude this section by providing some explicit equations for computing the
critical values w, where an initial coasting arc starts to appear. This happens when at
the time of the impulse SS + TT = 0. Using this relation and noticing that in this case,

H;™ = H; = —uCe/p?, we have a condition

Ce B B
— = /=T + 5S. 69
s V T r2 (69)
Upon expliciting this equation and simplifying, we have the relation

2(£)¥%sinA + (2)*K - QsinA =0, (70)
To To
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where

K= Il(fo) sinﬂ, - II(T!) Sin00

1 . roy . Tsy [B o2 .
= s———=[—sin A + 2¢(—) sin8; — 2¢(—=)sindy + 3,/ < Ate*sindysin 4],

Q=1+¢e?+2ecosly — 2esin00ta.n%.

In deriving these equations, we have used the simplification of an initial circular orbit.

On the other hand if we write the transversality condition (39) we obtain explicitly

(7‘:)2[(;”;)3/’1( +sin A][e\/% sinf; — \/-i_-ersin(n + 4)]

(12)
=10~ (&) esint, - [ Lersin(n + a)sin .

This equation is the general, time free transversality condition for interception from initial
circular orbit. In the case of w = w., Eq. (70) can be used to eliminate K, and we have

the simple relation

(%)’[e\/?;; cind, — \/}}T sin(n + 8)] = (2)¥esing, - \/i_-e, sin(n + 8)]. (73)

Now, if we use Eqs. (70) and (73) with 8, = 6, + A, and the time of flight At computed
from Kepler’s equation along the transfer orbit, and Eq. (53), we have three equations for
three unknowns e, 6, and A. The value w, then is computed from Kepler’s equation along
the target orbit. When w = w; > w,, the value n = n; which determines the required
coasting arc becomes an additional unknown, but we can always solve the inverse problem
by fixing ), for solving the three equations and then compute the corresponding critical
w for adjustment of n,

As special cases, we first notice that, for tangential interception, Eq. (52) applies
and (72) is reduced to Q = (p/ro)3/? which is precisely Eq. (51). For both tangential
interception and w = w,, Eq. (73) leads to sin8,; = 0. To satisfy all necessary conditions,

we must have sin 8y = 0, sinnp = 0. The transfer is of Hohmann type.
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Finally, we notice that, if the target orbit is circular, ey = O and the lead angle is
irrelevant. Ruling out the very rare case of non-Hohmann type transfer where esin 4 7=0,

we obtain from Eq. (72)

(%)3/2[(;‘-’;)3/'1( +8inA] =[Q - (;”;)3/21 sin A. (74)

Equation (74) is the general transversality used in Problem 1 when t; < P.

6. Interception at Hyperbolic Speed

In this section we consider a case of realistic importance when rr(t) represents the
motion of a ballistic missile. The time ¢, is then finite and is usually the time before
the missile reaches its maximum altitude. The initial to can not be arbitrary, usually
some time after the detection of the motion of a hostile missile. Thus both ¢, and ¢, are
specified and the intercept time At = t; — ¢o will be considerably short.

The geometry of interception is shown in Fig. 12. The interceptor is in its initial
circular orbit with radius ro = 1. No extra difficulty will be present if an elliptic orbit is
assumed except for more parameters involved. At t; the target is at the position defined
by the polar coordinates r;, § and ¢ with 6 being the longitude and  the latitude
as measured from the position of the interceptor at t,. The initial orbital plane of the
interceptor is taken as the reference plane. The inclination angle between the reference

]

plane and the interceptor-té.rget plane at ¢, is

tanyp

tang = ——, 75
ani = 220 (75)
and the angular distance between the interceptor and the target is

cos A = cospcos b. (76)

Again the technique presented in Section 4 is applied here. Because all end conditions are

given, no transversality condition is involved. When At is relatively short, the transfer
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trajectory is generally hyperbolic. The application of the technique of Section 4 shows
that in the hyperbolic region and elliptic region where At is not excessively long, the
variation of py(t) generated by an impulse applied at ¢, always falls into case (a) of Fig.
5, so the initial one-impulse trajectory is optimal provided that the one-impulse transfer
trajectory will not intersect the surface of the Earth, which is true for most of practical
intercept situations. Only when At is quite large we have py(t) belonging to case (b) of
Fig. 5 where an initial coasting phase is required.

Figure 13 shows the variation of AV as function of At for a specified down range
longitude § = 45° using the latitude © as parameter with 20° increment for an interception
of altitude r;, = 0.95. To have some physical feeling, an initial orbit of altitude 600 km is
chosen, r; corresponds ta an altitude of 251.23 km. fhe intercept times range from 2 to
15 minutes.

We repeat the experiment with a value ry = 1.05 which corresponds to an altitude of
948.77 km for the same initial orbit. The results are illustrated in Fig. 14.

In each figure, we have plotted a dashed line separating the elliptic and hyperbolic

interceptions. This is obtained by solving the equation for parabolic transfer

GﬁAt = (To +ry+ c)s/’ - ("o +ry— C)S/’, (77)
where ¢ is the chord length

c¢* =r) +r} — 2rorycos b cos . (78)

For each transfer time At and down range longitude §, it is obvious that as we increase
the latitude o, the transfer angle A increases, and the fuel consumption increases.

We notice that for any given é and o, or in general for any prescribed transfer angle
A, there exists an optimal transfer time At for overall minimum characteristic velocity.
This particular transfer can be obtained as follows.

In the present formulation of the problem, allowing At to vary is the same as fixing

To and ry and letting ¢, free. By the final remark in Section 3 this leads to H; = 0, hence
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C = 0. By (50)

ro A _ R __1_‘ _
(;)(Ztan > esinfy) = 3=

(79)

el

It has been shown in Section 5 that, for a velocity V, to be such that the trajectory
passes through the prescribed final point with radius r; and down range A, its normalized
components z and y must satisfy the constraining relation (57). In general, let Z and ¥
be the components, along the S and the T axis, of the velocity Vg /\/u/ro before the

application of the impulse. We have

z= \/ﬂeosinfo,
Po
80
. (80)
y—\/—cos:.
o ;

Notice that 2 and § are known quantities. Rewrite (79) by using definitions (21), (54)
and (80)

=—(2 ta.n—A- - zy). ‘(81)

The two equations (57) and (81) can be solved for z and y. Explicitly, we solve for z
from (57)

re (1 —cosA) — (n—coeA)y’.

82
ysin A (82)
Upon substituting into (81), we have a quartic equation for y
Aoy + Ay + Agy® + Asy + A =0, (83)
where s
Ap=1+n°-2ncos A,
A; =sin A[(n — cos A)Z — ysin 4],
A2 =0, (84)

As = (1 — cos A)sin A,

Ac=—(1-cosA)%

29




30

After solving for z and y, we deduce the relevant elements of the transfer orbit from

L4 =y? =1+ ecos by,
To

esinfy = zy,

tan b, = 0j=00+As

v
y2 -1 ’ (85)
el = (zy)* + (v - 1)},
a= o
RECE)
The minimum overall characteristic velocity is computed from (21) and (22) where now

»
p— — _i
o= /B2,

(#6)
o= /L~

The optimal time of flight At is obtained from Kepler’s equation

\/;I'ZsAt = (Ey — Eo) — e(sin E; — sin E), (87)

where (32) is used to evaluate the eccentric anomalies E,; and Ej.
The computation using these explicit equations indeed gives the points of minimum

AV in Figs. 13 and 14.

7. Conclusion

In this paper, we have presented the complete solution of the problem of interception
with time constraint for an interceptor with high thrust propulsion system. The necessary
conditions and the transversality conditions for optimality were discussed. The method
of solution amounted to first solving a set of equations to obtain the primer vector for
an initial one-impulse solution. Then based on the information provided by the primer
vector, rules were established to search for the optimal solution if the initial one-impulse
trajectory was not optimal. The approach is general in tn _:nse that it allows for solving

a problem of three dimensional interception with arbitrary motion for the target.
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Several numerical examples were presented, including orbital interceptions and bal-
listic missile interception. Since impulsive thrust is assumed, whenever it is convenient,
the results from optimal control theory are verified by parametric optimization using
hodograph theory. In the important case of short time interception of a ballistic missile
it is found that the intercept trajectory is usually hyperbolic and for a minimum fuel

trajectory, a single impulse should be applied immediately at the acquisition time.
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Figure 1— Switching function for finite thrust
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Figure 4— Intercept trajectory




0 (c) tm ¢
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Figure 6— Geometry of interception for Problem 1




[« 4 [+ 4
w8 w8
o] —t
g | g |
& s
E-’s‘ 3:_2
] S
E 3
s 2 N N
X 240 3.0 4.00 00 1.60 X ]
B DINENSIONLESS TIME OIMENSIONLESS TIME
3
&
Le
z—'
Q.
&
o o4
23
i
wd
8
.00 4.00

1.60 2.4
OIMENSIONLESS TINE

Figure 7— Variations of py(t) for Problem 1

(X |




0.24 0.32 0.40

CHARAC. VELOCITY
0.16

A

W

“h.00 40.00 80.00 120.00 160.00

OMEGR

Figure 8— Optimal characteristic velocity of Problem 1

200.00




Figure 9— Geometry of interception of Problem 3
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Figure 13— Geometry of interception at prescribed ¢,




"
~4

200

CHARAC. VELOCITY (KNn/S)
8.00 16.00 24.00

4.00 20.00 24.00

00 12.00 16.00
INTERCEPT TIME (MIN.)

Figure 13— Optimal characteristic velovity: ro/r, = 0.95

8
N o
™
ns
L8
C&)
x
p o
P
o8
D.‘E"
o
>
5]
Es
T+
T
(88 ]
8 . - .
©4.00 16.00 20.00 24.00

00 12.00
INTERCEPT TIHME (MIN.)

Figure 14— Optimal characteristic velocity: ro/r, = 1.05




OPTIMAL AEROASSISTED INTERCEPT TRAJECTORIES
AT HYPERBOLIC SPEEDS

Elmer G. Gilbert®, Robert M. Howe" *, Ping Lut, Nguyen X. Vinh*

The paper considers the optimization of earth-based multistage rocket
interceptors with very short flight times and long ranges. The objective is the
minimization of the launch mass as a function of interceptor design variables
such as: stage size, engine burn times and the angle-of-attack program.
Because of the demanding target conditions the ;ayload reaches hyperbolic
speeds and the centrifugal force greatly exceeds the gravity force. The
minimization of launch mass shows that the needed down-force on the payload
is best provided by negative aerodynamic lift. The description of such
negative-lift, aeroassisted optimal trajectories is a principal goal of the paper.
Topics treated include: a model for the multistage interceptor, the formulation
of the optimization problem, the mathematical derivation of a universal curve
which provides a simple and accurate model for negative-lift segments of the
optimal trajectories, effective procedures for efficient numerical optimization.
Results of solution studies are reported. For flight times of six minutes and a
range of about 3000 miles, a five-stage interceptor requires a mass ratio of
several thousand. The dependence of the optimal mass ratio on key design and
target parameters is described.
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Nomenclature

dimensionless thrust in g's = T/(mogo)

lift and drag coefficients

dimensionless drag force = % pv2SCp/(mogo)
gravity acceleration at r,

altitude =r-r,

scale height of exponential atmosphere = 7.16 km
dimensionless altitude = h/r,

specific impulse

dimensionless specific impulse = isp/(ro/go)!/2
dimensionless lift force =% pv2SCL/(Mmogo)

vehicle mpass

reference mass

dimensionless mass = m/m,

number of stages

distance of vehicle from center of earth
reference distance

dimensionless distance = r/r,

cross sectional reference area

real time

engine thrust

vehicle speed

dimensionless speed = v/(gr,) 172
dimensionless time for universal curve

angle of attack

flight path angle with respect to local horizontal
dimensionless force coefficient = PoroS/mg
polar angle of vehicle trajectory

fineness ratio = stage length/stage base diameter
dimensionless inverse scale height = ro/hs




p(r) atmospheric density

Po reference density = p(ro)

P(H) dimensionless density = p(roH+r0)/Po
Gi mass-ratio parameter for ith stage

. dimensionless time = ¢/(ro/go) /2

I. Introduction

The utilization of satellite-based missiles for intercepting ICBM's during their ascent
constitutes one of the major efforts in the U.S. Strategic Defense Initiative. Here, an
alternative approach is considered: the use of high performance, multistage, earth-based
interceptors. The very short flight times and long ranges require hyperbolic speeds and a
high ratio of take-off mass to payload mass. A natural objective is the minimization of the
mass ratio with respect to interceptor design variables such as: stage size, engine burn
times, coasting times between stages and the angle-of-attack program. Using techniques -
described in this paper, numerical solutions of such minimization problems have been
obtained. In addition to giving information on how target parameters affect the optimum
launch mass, they show that negative aerodynamic lift plays a crucial role in the midcourse
portion of the optimal trajectories. The general physical basis for this key result is easy to
understand: the hyperbolic speed generates a centrifugal force far in excess of the gravity
force, and the required down-force is generated more efficiently by negative acrodynamic
lift than by engine thrust. The primary objectives of this paper are threefold: (1) to
summarize the models and methods by which the optimal acroassisted trajectories are
computed, (2) to clarify by analysis the detailed nature of the aeroassisted portion of the
optimal trajectories, and (3) to give some insight into how design and target parameters
affect the optimal launch mass.

The presentation begins in Section II with the details of the mathematical model for
the multistage interceptor. Physically reasonable simplifying assumptions are introduced to
keep the complexity of the model within acceptable bounds. The minimum launch mass
problem is formulated in Section III. To emphasize the importance of the negative
aerodynamic lift, three examples of optimal trajectories are given. They correspond to
different assumptions on the trajectory of the payload stage: extra-atmospheric flight,
atmospheric flight with zero aerodynamic lift, negative-lift acroassisted flight. With respect
to launch mass the aeroassisted flight offers a clear advantage.




Over a wide range of target conditions it has been observed that the optimal
aeroassisted trajectories share a common feature. The atmospheric segments of the payload
trajectories follow closely a speed-altitude relationship which we call the universal curve.
The theory of this universal curve is developed in Section V1. It provides simple formulas
which describe accurately the aeroassisted motion of the payload.

Section V reviews techniques used in the computation of the optimal trajectories. The
minimum launch mass problem is a nonlinear, multistage, optimal control problem with
parameters and constraints. The effect of its inherent complexity on the computations is
cased by using a direct method in which the angle-of-attack program is approximated by a
finite-dimensional functional representation. The resulting finite-dimensional optimization
problem is solved efficiently by the application of an augmented-Lagrangian, quasi-Newton
algorithm. Important practical aspects of the overall procedure are discussed. For
example, it is shown how the angle-of-attack program can be parameterized indirectly
through a direct parameterization of the flight path angle. This step is crucial in obtaining a
numerically well-conditioned optimization problem.

Many optimal trajectories have been computed. Some of the results are summarized
in Section VI. They show the effect on launch mass of such parameters as the time of
flight, the intercept altitude, the number of stages and the specific impulse of the engines.

For 5 and 6 stage interceptors mass ratios on the order of several thousand are necessary.
Short flight times and low intercept altitudes increase appreciably the launch mass.

II. Model for the Multistage Interceptor

To obtain the equations of motion it is assumed that all stages of the interceptor are
modelled as a point mass moving in a plane which contains the center of a spherical, non-
rotating earth with an inverse-square gravitational field. Choosing state variablesr, 6, v, Y and

m and writing the resulting equations! in dimensionless form then gives:

dR _y ., 48 _YVcosy
d I— i V.1 ]
a;:_=T1/.LAqu‘_tL+[R RZJCOSYJ'
d_V___Acosa-D_siny M _ -A
det M R? dt Isp
4

(1




These equations are well scaled when 1o = earth radius and mg = nominal mass of vehicle.
Note V =1 corresponds to the circular orbital speed at r, and T = 2% corresponds to the
period of a circular orbit at ro.

The dimensionless lift and drag forces are given in terms of H and V by

-lapanvicL . D=jnP@EV2Cp . @

For the results reported later in this paper an exponential variation of density with altitude has
been used. This approximation simplifies the computations and produces almost the same
optimal trajectories as more complex atmospheric models. For the exponential variation,

P(H) =¢- MH 3)
Lift and drag coefficients are modelled by the formulas2:
"CL=CNcosa-Cpsina,

Cp=Cnsina+Cpcosa,

Ca =0.13,

CL = sin 2a cos % a+ 5 (n)1 A sin a Isin al. C))

In addition to choosing an angle-of-attack program, a(t), in (1), it is necessary to
specify the thrust program and describe parametrically the physical characteristics of the stages.
Our model of the thrust program is simple, and is consistent with the requirements of solid-fuel
engines. For the i th stage it consists of an initial coasting period, t;C, where A =0, and a
single thrusting period, t;B, where A = constant > 0. The first stage has no coasting period
(%1€ = 0) and there are N powered stages. The final payload stage is unpowered but may
generate a controlled aerodynamic lift. Its coasting time from burnout of the Nth stage to targzt
interception is denoted by N4 C.

The stage masses are modelled as follows. For the i th stage, let M;P» MiF and M;S
denote, respectively, the masses of the payload, fuel and structure (together with the engine
and other jettisoned components) . Then




MP = Mi+lp+ MiotF + M;418,i=0, ..., N-1,
M, = launch mass of entire vehicle,

MNP = mass of final payload. (5)
Let
Gi+l Mgp= Ml#lp » i= 0. eeey N'l- (6)

Here, 0 < G; < 1, is a stage mass-ratio parameter. Once Gj, ..., ON and MNP are specified, the
individual stage-payload masses MgP, ..., MN.1P are known. To avoid the need for additional
stage-size parameters, a final simplifying assumption is made:

MS=01MF , i=1,..,N 0

Then from (5) it follows that
MF = (1.1 M P-MP), i=1,....N. ®)

While (7) neglects many details of the structural design, it is representative of attainable
structural efficiencies. Once the fuel masses are determined, the thrust levels A; can be
computed. They are proportional to M;F/7;B.

The masses of the stages also affect, through their reference areas, the acrodynamic
forces. Let S;, d; and A; be, respectively, the base area, base diameter and fineness ratio of the
i th stage including its payload. Assume that the mass density of each stage prior to the ignition
of stage burning is the same. Then, m;. P = (const.)d;3 A;. Since §; is proportional to d;2 this
gives

Si = Cs (mj. P A;'1)23,
=Csmog23 M. PA;1)2Bi=1,..,N+1. 9)

We have chosen Cg to make (9) conform closely with the corresponding relation for the
Minuteman I vehicle. In our computations A; =10 for i =1, ..., N. Since the final payload

is subject to acrodynamic forces during its coast to the targe, its reference area, SN+1, and
fineness ratio, ANy, are needed. This explains i = N+1 in (9). In our computations we have
chosen An4; =3S.




III. The Optimization Problem

In this section we outline the general features of the optimal interception problem and
show by some examples the character of the optimal trajectories. The specified interception
data are: the flight time of the interceptor = tf, the target range angle = ¢, the target altitude =
h¢ and the payload mass = mnP. The optimization objective is to minimize the total launch
mass mP. The free variables in the interception are: the angle-of-attack program, the coasting
and thrusting periods t;C and t;B, and the mass-ratio parameters &;.

Once the free variables are given it is clear how the corresponding multistage trajectory is
generated. Let rg = carth's radius. Then the multistage nondimensional equations of motion
can be written. For the first stage: R(0) =1, 6(0) =0, ¥0) = 90°, V(0) =0, M(0) = M,P.
Since the free variables determine A(t) = A} (through MjF and 1,B) and M,P, the equations of
motion can be integrated for 0 <t S 1;B. Att = 1B staging occurs and the equations of
motion use data appropriate to the second stage. Specifically, (1) is integrated for tBst <
1B + 1,C + 1B with R, 6, Yand V continuous across staging and with A(t) determined by Az,
77C and 1B in the obvious way. The initial mass of the second stage is M(tf“)'- MiP. The
remaining stages are handled in the same way until t=tr=7;B + 1;C + 1B+ ... + 1B +

TN+1C. Actually, this equation is used to determine TN,.1C. '

Of course, there are constraints on the free parameters:

0<oj<l, 0<TB<tB 0s1C, i=1,...,N. (10)

The lower bounds, T;B, provide a means for limiting the maximum thrust or acceleration of
each stage; they may, for instance, depend on other parameters such as M;F. In addition to
these direct parameter constraints, there are the implicit constraints corresponding to target
interception: 6(tg) =0¢, r(Tf) =ry.

Operational considerations may add further constraints to the interception problem. We
have, for example, considered three distinct optimization problems. They differ only in the
assumptions placed on the motion of the unpowered final stage; the models for the powered
ascent stages remain the same. In the first problem, the final payload is constrained to move
essentially outside the atmosphere. Thus, the trajectory for the payload is computed easily as a
Keplerian transfer from the burnout of stage N to target interception. The constraint is imposed
by requiring the minimum altitude of the Keplerian trajectory to exceed a specified altitude. In
the second problem, the payload is allowed to move through the atmosphere, but it generates
no aerodynamic lift: a(t) =0, t¢- tNC S 7 S 1. This avoids any increase in drag and heating
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which may result from lift. In the third problem there is no constraint on the payload so that
an aeroassisted coasting trajectory is possible.

Figure 1 and Table 1 show typical numerical results for the three problems. The intercept
conditions are: t¢ = 360 sec., O = 45° (approximately 3100 mi.), hg = 400 km. (approximately
250 mi.), payload mass = mNP = 10 kg., isp = 300 sec. and N = 5. In general, the optimal
coasting periods for the powered stages turn out to be zero. The only exception is the fifth
stage of the Keplerian case.

The launch mass is least for the aeroassisted case. There is a simple physical
explanation. The short flight time demands hyperbolic speed (V > ¥2) while simultaneously
the trajectory must be kept close to the earth in order to intercept the target. To resolve these
conflicting demands, a net down force on the vehicle is needed. This force is supplied,
without expensive engine thrusting, by negative acrodynamic lift as the payload begins its coast
toward the target.

For the zero-lift. atmospheric case negative acrodynamic lift is also exploited, but because
of the no-lift constraint on the payload it occurs together with engine thrust in the fifth stage.
This accounts for the long burn-time of this stage; it allows more time for the negative
aerodynamic lift to act.

In the Keplerian case, the altitude of the payload is constrainted to exceed 100 km. This
leads to a very large launch mass because it essentially eliminates effective utilization of
negative aerodynamic lift. The Keplerian solution does have a potential operational advantage.
Since the trajectory is essentially outside the atmosphere, communication with the payload is
not blocked by atmospheric ionization.

IV. The Mid-course Universal Curve

The aeroassisted trajectory in Figure 1 has an obvious mid-course segment on which the
final payload coasts for an extended period of time until it begins its rise to the target. On the
segment there is a negative acrodynamic lift and the path is nearly horizontal. We have
observed such segments on all optimal aeroassisted trajectories where performance
requirements are high, i.e., t¢ is small, O¢ is large and h¢ is small. Moreover, they can be
modelled accurately by a single universal curve which relates altitude and speed. This unique
relationship is obtained oy balancing the difference between centrifugal and gravity forces with
negative aerodynamic lift and minimizing the drag losses by choosing the angle of attack which
maximizes the lift-to-drag ratio. As will be seen, the time-dependent motion of the payload on
the universal curve also has a universal character.




Our development begins with some notation and simplifying parametric assumptions.
Let - CL® and Cp"® be the lift and drag coefficients which maximize - CL/Cp. They are
obtained from (4) and depend only on the fineness ratio, A = AN, of the payload. Recall tha
the reference area of the payload, SN.1, is given by (9) and is therefore determined by ANst
and the mass of the payload, mnP. A dimensionless coefficient CL°n/2 plays an important
role in the equations which we will consider. It is given by

% CL°n= % CL® (mo)1 p(ro) 1o SN+1 (11)

Since CL"and SNy are fixed by Ans1 and mnP, CL*n/2 depends only on mg and ro. For
the purpose of this section it is convenient to make the following choices for mg, and r,,:

mo=mNP, p(ro) 1o = ‘mNP(CL Sn+1) L. (12)

This gives M(t) = 1 in (1)and 1 C."n =2

The required balance of forces on the nearly horizontal trajectory is achieved by setting the
normal acceleration, Vdy/dt, and y equal to zero in (1) and Cp. = - CL* in (4). The result is the
expression for the universal curve:

V= (14H)12 [1- 3 (1+H) PAD]12, (13)

The reason for choosing rq by (12) is now clear: (13) contains only one parameter (i) and at
the reference altitude (H=0) the dimensionless speed has a nice nominal value (V=2). Now let
P(H) be given by (3). Noting that g = 103, it is easy to show that 1.3SV <S4 implies IHI <
0.6 x 10-3. Since the expected variation of H is so small, (13) is closely approximated by

V=GH)=(1-3etyi2, (14)

Even for a non-exponential atmosphere this expression is an excellent representation of (13)
because the exponential approximation of P(H) only needs to be accurate for IuH! < 0.6, or
thl $0.6 hs. For the payload described in the previous section, r, corresponds to an altitude
of 64.0 km. above the earth's surface.

Along the universal curve there are drag losses and V must decrease. This in turn causes
H, 0, ¥ and a todepend on 1. To obtain these dependencies we begin by substituting (14)
into (1) with A =0:




dVv ... dH . _dR smy
;’G(H)E=G(H)E;-G(H)G(H)Sln7=-n- R2 (15)
Here, G'(H) is the derivative of G(H) so
G =- 31 e WH [GEDP, (16)

From this expression it is not difficult to verify that V = G(H) 2 1.3 implies G'(H) G(H) >
0.58 p. Since u =103, R =1 and v is small, the identity on the right side of (15) is closely
approximated by

D =-GH) GH) sin v. an

This is the drag required for motion along the universal curve.

By (2) and (4), D defines a and thus Ci.. Since the line Cp = (-CL*/Cp*)Cp is the
tangent to the lift-drag polar at Cp®, it is a good approximation for it in the neighborhood of
Cp’. This approximation with D determined by (16) and (17) gives

3 Chsu (G siny, 8

L=-
Substituting (14) and (18) into (1) yields the equations of motion on the universal curve.
To simplify these equations it is assumed with very little error that sin y=Y, cosy=1
and R=1+H=1. Then

i—H‘YG(H) —=G(H).
g-:f =.3 g; pe- HH [GED]3 y + G(H) - [GAD]-L. (19)

Because M(t) = 1 and V(1) = G(H(t)) the order of the original system of equations, (1), has
been reduced from five to three. However, the equations (19) are still complicated because
they are coupled and nonlinear. Fortunately, the parameter | is large and this leads to a

singularly perturbed system whose solution can be obtained analytically.

The nature of the singularly perturbed problem is revealed more clearly by introducing the
scaled variables:

A=pH , F=py, GED=(1-jehyIn (20)
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Then (19) becomes

e B IGE)’ 7+ G - (GAED]™). Q1)

Standard singular perturbation theory can be applied to this system3 and it shows that the term
in the brackets goes to zero quickly and that the remaining, asymptotic, solution satisfies

dH, o
o - hOH)
. = -}i;c"‘{tc‘s@.)r’- [GAE"). @2)

This is a first-order system which can be integrated easily when expressed in terms of the
variable y = [G(Hg)]"1.
The details of the integration and back substitution to the original problem variables are

lengthy and are omitted. They produce the following formulas for the asymptotic motion along
the universal curve:

A *®
H(t) = ﬁH(x) , 0(t)-0(zy) = %[G(x)-s(xo)].

T) = D?X,VT=°X,X= + D‘t. , 23

where

Vx) = Be*- 1) B+ 1), ) = (Voo
fx) =-Ind (1-90)] , 0(x) = -x+2ln1 (3e*- 1), 24)

and xo is determined by ('(xo) = V(t,) or, equivalently, by
X0 =1n 3 [V(to) - 111 (V(5o) + 1). @25)

It is easy to confirm that the above formulas cause H and V to lie on the universal curve.
Also, using (2), (14), (16), (17) and (24) it follows that

11




Cp = DGne V2l = -G GE) Y Gne HiVEyl = Cp" 26)

Thus, within the accuracy of the approximation sin Y=Y, the motion on the universal curve
actually does maximize the lift-to-drag ratio.

The functions f1, 8, 9 and ¢ are plotted in Figure 2. The ranges of variables which are
shown are adequate for any reasonable target conditions. For example, with C.*/Cp* = 2.5,
the value corresponding to A = 5, a unit change in ) corresponds to a 72° change in 6. For
the entire range which is shown QI < 0.61. This implies H € 0.61u1 = 6 x 104 rad. =
0.034°. The departure of y from zero is indeed small.

V. The Numerical Optimization Procedure

A. General Discussion

Over the years many procedures have been developed for the numerical solution of
problems in optimal control. One approach is to write the necessary conditions and solve the
resulting two-point-boundary-value problem by well developed techniques 4-5_. There are
difficulties in applying this approach to the interceptor problem. The two-point-boundary-
value problem is replaced by a complex multi-point-boundary-value problem and derivatives of
the nonlinear functions appearing in the problem statement are needed. Moreover, reasonably
good initial estimates of the optimal solution and the corresponding necessary condition
multipliers are needed. Various gradient methods6:7 can be extended with less difficulty to the
multistage problem, but at best convergence is slow and terminal conditions cannot be met
accurately. Second-order gradient methods8:9 have better convergence rates, but they require
second derivatives of the problem functions which are difficult to obtain because of the
complex nonlinear and multistage character of the interceptor problem.

In view of the above mentioned difficulties it seemed most appropriate to use a direct
method in which the infinite-dimensional optimal control problem is replaced by a finite-
dimensional approximation. Many approaches for doing this have appeared in the literature.
See, for example, the review given by Hargraves and Paris!0. In our approach, the angle-of-
attack program, a(t), is approximated by a finite-dimensional functional parameterization and
the equations of motion with staging conditions are integrated accurately. The details of the
overall process, are described in the following subsections. Other direct methods, such as
collocation methods !0, could also be applied to the interceptor problem. A possible advantage
would be the elimination of special procedures, such as the one described in the next
subsection, for improving numerical conditioning. Collocation methods, as well as many other
direct methods, do have a have a potential disadvantage. Accurate solution of the differential
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equations may necessitate a fine collocation grid, which in turn increases the dimension of the
finite-dimensional optimization problem.

B. The Indirect Parameterization of a(t)

In the approximation of the angle-of-attack program several questions arise: the
dimension and the form of the functional representation, the accuracy of the corresponding
approximate optimum solution, the conditioning of the resulting numerical optimization
problem. Our experience shows that relatively low dimensional parameterizations are quite
effective, provided the approximating functions are chosen with some care. The dimensionality
is important because it has a strong effect on the computational time. Conditioning affects both
the speed and reliability of the optimization process.

A direct parameterization of a(t) is the most obvious way to procecd. For example, a
continuous piecewise linear function, which is parameterized by its values at its joints (points
of slope discontinuity), is simple and has flexibility in that the joints may be placed closely
~ where rapid changes in a(t) are expected. The fatal shortcoming of direct parameterizations is
* poor conditioning of the optimization problem. The terminal constraints are very sensitive with
respect to small changes in a(t), especially when the changes occur early in the flight. This is
not surprising in view of the open-ended integrations which occur in solving the equations of
motion.

To circumvent this poor conditioning, it is better to parameterize a(?) indirectly through a
direct parameterization of y(t). In this approach, dy/dt is computed from the parameterized
¥(t) and substituted, together with R, v, V and M, into the third equation of (1). This
equation then becomes through sin @ and L an implicit equation in a@. The indirect
parameterization of a is obtained by solving the implicit equation. Note that this eliminates the
need to integrate the differential equation for dy/dt. Of course, the remaining differential
equations in (1) must be integrated as usual. When the indirect parameterization is used, the
entire trajectory is under more direct control. Changes in ¥(t) near the beginning of the
trajectory have very little effect on the terminal portions of the trajectory. Thus, the sensitivity
of the terminal constraints to the parameterization is greatly reduced. Another advantage,
perhaps less important, is evident at launch. Here, the differential equation for dy/dt has a
singularity because V = 0. With the y parameterization the differential equation is not integrated
and the normally troublesome singularity is circumvented.

The implicit equation for a presents possible difficulties. An inadmissible ¥(t) may be
specified, i. e., one in which the implicit equation has no solution. This corresponds
physically to requiring more transverse acceleration than is available. In most of our work
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inadmissibility has not been a problem, provided the line search in the optimization algorithm
has a procedure for reducing step size when it produces an inadmissible %(1). Occasionally,
when a must be very large, as in the fifth stage of the Keplerian problem of Figure 1, it is
better to parameterize a(t) directly, keeping the Y parameterization for the other stages. The
actual numerical solution of the impiicit equation is straightforward. One approach is to use
several Newton iterations. Alternatively, L may be approximated by a quadratic function of
sin o then the implicit equation is quadratic in sin & and it may be solved by formula.

Another issue is the smoothness of a(t) and other problem variables. If y(t) is
continuous but has slope discontinuities, as in the case of a piecewise linear parameterization,
the differentiation of y(t) causes a(t) to be discontinuous. Even for smoother
parameterizations the problem is not avoided. At the staging times the vehicle mass, thrust and
acrodynamic parameters change discontinuously and this causes discontinuities in a(t).
Continuity of a(t) can be imposed by introducing, through the functional representationof ¥(t),
an appropriate jump in dy/dt at the staging time. The value of dy/dt just after staging,
(dy/dt)*t, is evaluated by using its defining equation, (1), with R, v, V and @ continuous
across staging and the changes in M, A and aerodynamic parameters determined by the staging
equations of Section IL

It is also possible to introduce other smoothness constraints. For example, consider the
pitch angle, y = a +vy. Although y does not appear in the point mass equations, it has
practical implications Lecause the moment applied to the vehicle is proportional to its second
derivative. To avoid an impulsive moment it is necessary to require continuity of dy/dt. This
leads to the condition: (dav/dt)* - (davdt)” = (dy/dt)* - (dy/dt)-, where the superscripts give
the values immediately before and after staging. In order for the derivatives with respect to a
to exist, it is certainly necessary that a(t) be continuous. Thus, as in the previous paragraph,
both (dy/dt)* and (dy/d7) are known. The resulting condition on (do/dt)* - (da/dt)" can be
obtained by differentiating the dy/dt equation once. This in turn defines the value of
(d2y/d2t )*. Thus, conditions on both (dy/dt)* and (d2y/d2t)* are obtained.

Our numerical experience has produced some guidlines on the functional form of the ¥
parameterization. Because of the large changes in ¥ encountered in the first stage it has been
found necessary to use a parameterization with at least three free parameters. Since ¥(0) = 90°,
a cubic in t satisfies this requirement and has been as effective as any other choice. For the
remaining stages, one free parameter suffices. When there are no smoothness constraints, a
linear function works well. Only one parameter is involved for each stage because ¥(t) must be
continuous across staging. When the various continuity constraints are imposed, a more
elaborate, one-parameter represeitation is needed. For instance, when dy/dt is continuous,

we have found it effective to use y(t) =a + bt +ce O +deYT. The parameters ¢ and d
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allow the matching of the constraints on (dy/dt)* and (d2y/d2t)*. The values ¢ and v are
chosen so that the effect of the continuity conditions does not persist for too long a period of
time. For a given functional form, the free parameters may be defined in different ways. It has
been found that problem conditioning is usually better if values of ¥ at specified interpolation
points are used. For example, when there is one free parameter for a stage, the value of y at
the thrust termination time is a good choice.

C. Formulation of the Finite-dimensional Problem

The variables in the finite-dimensional optimization problem are the parameters in the
representation of y(t) and the staging parameters: oj , tiB, and iC, fori = 1,....N. The
constraints, (10), on these parameters are implemented by means of nonlinear transformations

ci =(1-€)(0.5 + 0.5 sin ¢; ), X))
1;B = 0.5;B + T;B) + 0.5%;B - T;B) sin vj, (28)
tC= 7;C (0.5+0.5sin i) . (29)

In (27), € > 0 is a small positive number which implements the strict inequalities oa ¢} The
variables ¢j, vj and yj become unconstrained variables in the finite dimensional optimization
problem. The parameters ;B and 7;C are a scaling parameters which establish upper limits for
7iB and 7;C and improves the numerical conditioning of the optimizatiza problem. The
nonlinearities introduced by the transformations do not appear to affect the speed or reliability
of the numerical optimization process. If coasting of the powered stages is not allowed and the
guidelines of the preceding subsection are followed, there is a total of 3N +2 variables: N each
for (27) and (28), 3 for the parameterization of v in the first stage and 1 for the parameterization
of yin each of the remaining stages.

The remaining constraints in the optimization problem are the terminal conditions 8(tf) =
6¢ and R(tf) = Rf. Errors in meeting these equality conditions are evaluated by integrating the
differential equations of motion, which are fully defined once the variables of the preceding
paragraph are specified. The cost to be minimized is MoP, obtained from the &; by (6).

D. The Numerical Evaluations

In order to implement the optimization algorithm it is necessary to numerically evaluate
8(tf), R(tf) and MoP and their gradients with respect to the variables. To avoid the very
complex direct evaluation of the gradients, first order finite differences on 6(tf), R(tf) and
MoP are used. This is numerically expensive because each evaluation of the gradient requires
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n + 1 integrations of the differential equations, where n is the number of variables. Techniques
for speeding the integrations have been report by Howe et. al.!l. For the specific results
reported here a fixed-step RK-4 procedure was used with approximately 10 steps per stage.
Rounding and truncation errors in the computation of the gradients can seriously degrade the
performance of the minimization algorithm. In this regard the naturally good scaling of the
dimensionless equations (1) is a distinct advantage. Balancing the rounding and truncation
errors by a proper choice of the finite difference increment is also important!2,

For those cases where the payload stage follows closely the universal curve it is possible
to eliminate for the payload the parameterization of ¥(t) and the numerical integration of the
equations of motion. At the time of final-stage bumout, V(tp) is known. By setting tg = 1p,
formulas (23)-(25) define the motion along the universal curve. In general the conditions
V(tp) = G(H(tp)) and ¥(tb) = 0 ( a very accurate approximation since H <6 x 104 on the
universal curve) are not satisfied by the ascent trajectory, so they must be imposed as additional
equality constraints. The universal curve is followed until a time t = td is reached. After this
time a(t) is set to zero.. Because there is no aerodynamic lift and V> 1, the trajectory then
departs from the universal curve and rises toward the target. By evaluating this departure
trajectory at © = 1f, the errors in the target conditions are determined. Because ¥(tp) = 0 one
variable is omitted from the parameterization of y(t); this is balanced by the addition of the
parameter td.

E. The Optimization Algorithm

The equality constraints are treated by the augmented Lagrangian method, which reduces
the constrained problem to a sequence of unconstrained problems. Both the penalty
coefficients and the multipliers are updated automatically by a scheme which is described on
page 292 of Fletcher!3. The unconstrained minimization program used in our computations is
a variant of the BFGS, quasi-Newton implementation due to Shanno and Phual4. It provides
superlinear convergence without requiring the evalvation of second derivatives. A reset
procedure has been added which greatly reduces the probability that the descent will terminate
prematurely due to accumulation of round-off errors in the quasi-Newton update.

Generally, the performance of the overall optimization procedure has been very
satisfactory. The number of gradient evaluations required to obtain a solution is between 300
and 400. This is not unreasonable for the typical number of problem variables: 17 for N =35
and 20 for N = 6. Errors in meeting the specified target conditions are very small: about 1
meter in altitude and about 0.05° in range angle. The computational time for a solution is
typically between 60 and 90 minutes on an Apollo DN 4000.
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VI. Some Specific Results

Many optimal intercept problems have been solved using the methods and models of the
preceding sections. In this section we summarize some of our results for the aeroassisted
problem. The pitch angle is constrained to have a continuous derivative except at the entry and
exit points of the universal curve, where a(t) is allowed to be discontinuous. A variety of
problems have been solved where coasting of the stages is allowed. In these problems the
optimal coasting times are either zero or so small that they have little effect on the optimal
launch mass. For all the problems considered here the coasting times have been set to zero.
The minimum bum time for each stage is 10 seconds and the payload mass is 10 kg. Except
for the results in Figure 6, the specific impulse is fixed at 300 seconds.

Additional details of the optimal aeroassisted solution described in Section III are shown
in Figure 3. The staging times are apparent. With the exception of the fifth stage, the optimal
burn times are at their lower limits of 10 seconds. The resulting vehicle acceleration A/M is
quite high, ranging from about 20 to 70 g's. If the minimum burn time is reduced below 10
seconds, even higher accelerations are obtained. The universal curve is followed from about
53 seconds to 194 seconds. The slight drop in V predicted by Figure 2 is evident. There is
little loss in speed after the exit from the universal curve. The reason is obvious from Figure 1:
the trajectory leaves the atmosphere quickly, so there is little acrodynamic drag. Close
inspection of y(t) for 0 < t < 60 shows its linear-exponential parameterization. If the
smoothness constraint on the pitch angle is removed and a(t) is allowed to be discontinuous-at
the staging points, the overall character of the trajectory is essentially the same and the launch
mass is reduced by about 0.5 %. Thus, the smoothness of the pitch angle does not seem to be
a very stringent constraint.

Figures 4 through 6 illustrate the effect of key parameters on the optimal launch mass.
Note that the target altitude is 200 km., a more demanding intercept condition than the 400 km.
of the preceding problem. Figure 4 shows the relative performance of optimal aeroassisted
trajectories and optimal zero-lift, atmospheric trajectories. The advantage of the aeroassisted
trajectories is greater for shorter intercept times. For both types of trajectories the launch mass
grows very rapidly as the flight time approaches 320 seconds. Figure 5 shows the difference
between 5 and 6 stage aeroassisted interceptors. The 6 stage interceptor has a decided
advantage for the shorter flight times. Figure 6 shows the affect of reducing the specific
impulse. The 10 second reduction increases the launch mass by over 40 % for the shorter
flight times.

Additional solution results for the aeroassisted case suggest other trends. If all other
parameters are fixed, the optimal launch mass varies little if the range angle and intercept time
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of the target vary in direct proportion. Increasing the axial drag coefficient, Ca , by 0.02
increases the launch mass by about 10 %. Increasing the mass density of the stages by 50 %
decreases the launch mass by about 6 %. More accurate models of atmospheric density have
very little effect on the launch mass.

VII. Conclusions

Models for high-performance, multistage rocket interceptors have been introduced.
Efficient numerical procedures for minimizing their launch mass with respect to staging
parameters and the angle-of-attack program have been described. These procedures circumvent
many of the complexities associated with the nonlinear, mulitistage character of the
minimization problem. Even though the angle-of-attack program is represented approximately,
the equations of motion are solved accurately. Inherent ill-conditioning of the procedure is
overcome by parameterizing the control variable (angle of attack) indirectly by a direct
parameterization of a state variable (flight-path angle). A key aspect of the optimal trajectories
is the negative-lift, aeroassisted character of the coasting payload stage. A simpie and accurate
analytical model of this coasting motion (the universal curve) has been derived. This model
may prove useful in other problems where planetary atmospheres are encountered at hyperbolic
speeds. The effect of various design parameters and target conditions on the optimal launch
mass are described. As the intercept time is reduced the optimal launch mass rises at an ever
increasing rate.
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Table 1. Numerical Data for Optimal-Trajectories in Figure 1

-

Burnout conditions for 4th stage

Type of : Launch

Solution Mass kg) bkm) ¥ 0 (deg) y(deg) t(sec)

Aeroassisted 18,990 58.3 1.68 2.2 3.2 40.6

Zero Lift Atmospheric 23,070 57.0 1.89 2.5 3.5 42.5

Keplerian 50,720 64.6 1.82 5.8 -1.6 75.2 .
Burnout conditions for Sth stage »,

Coasting Time

Type of between 4th :

Solution andSthStage h(an) ¥ 0 (deg) y(deg) 1fsec)

Aeroassisted 0 63.7 2.11 3.7 0 52.6

e
Zero Lift Atmospheric - 0 66.5 1.96. 240 0.005 201.9
Keplerian . 90.6 1278 210 19.5 -4.7 182.0 ~
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Figure Captions

Fig. 1 Optimal trajectories for minimum launch mass: A- Keplerian, B- aervassisted, C-
zero-lift atmospheric, D- bumnout of fifth stage, E- burnout of fourth stage, F- end of coast
for fifth ztgge. Payload = 10 kg.; range angle = 45 deg.; target altitude = 400 km ; flight
time = 360 sec..

Fig. 2 Functions describing motion on the universal curve.

Fig.3 Additional details of the optimal acro assisted trajectory shown in Figure 1.
Fig. 4 Optimal launch mass as a function of flight time. Number of stages = 5;
payload = 10 kg.; range angle = 45 deg.; target altitude = 200 km.; specific impulse =
300 sec..

Fig. 5 Optimal launch mass as a function of flight time for acroassisted trajectories.

Payload = 10 kg.; range angle = 45 deg.; target altitude = 200 km.; specific impulse =
300 sec.. )

Fig. 6 Optimal launch mass as a function of flight time for aeroassisted trajectories.
Number of stages = 5; payload = 10 kg.; range angle = 45 deg.; target altitude = 200 km..
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Abstract

The problem of minimum-time attitude control of a
spinning missile is addressed. The missile is mod-
eled as a rigid body which is symmetric about one
axis. The missile is assumed to have a large roll rate
about this axis of svmmetry. Control is achieved by
a single reaction jet which. when fired. provides a
constant moment about a transverse axis. Distur-
bance torques are assumed to be zero. The equa-
tions of motion are written under these assumptions.
The missile is assumed to have some arbitrary initial
transverse angular velocity and it is desired to take
it to some final attitude in minimum time while re-
ducing the transverse angular velocity to zero. This
problem is formulated as an optimal control prob-
lem. Instead of taking the conventional approach of
solving a two point boundary value problem. we con-
sider an alternative approach. This approach deals
with the specific case where only two thruster firings
are sufficient to change the attitude of the missile in
minimum time. By iterating on the switch times and
integrating the state equations. we can compute the
thruster firing times for a given set of boundary con-
ditions. Some examples are included to illustrate the
application of the concepts presented. We conclude
by proposing a mechanization of this control scheme
and pointing out some further research directions.

1. Introduction

Over the past three decades many papers and re-
ports have treated various aspects of homing schemes
and trajectory control associated with these schemes.
Most of these papers consider surface-to-air or air-to-
air missiles which use aerodynamic forces for trajec-
tory rontrol. With the advent of SDI. much atten-
tion has been focused on the interception of satellites

*Ph.D. Candidate in Aerospace Engineering
Student Member, ATAA .

**FProfessor of Aerospace Engineering
Associate Fellow, ATAA

or ICBM's outside the sensible atmosphere. Hence.
aerodynamic forces cannot be generated for vehicle
control. Instead. the thrust of a rocket engine is used
to provide the necessary maneuver forces. with ve-
hicle attitude control employed to point the thrust
in the desired direction. Conventional thrust vector
control systems tend to add both weight and com-
plexity, and as a result counter the objective of min-
imizing the weight of the guided warhead. The sim-
plest control involves a single thruster at right angles
to the spin axis of the missile. In this scheme. the
missile is given a large roll rate and the thruster is
turned on for a fraction of each revolution in roll and
at the right time during each roll cycle so that the de-
sired attitude changes are achieved. Meanwhile the
main thruster. by producing a thrust component per-
pendicular to the flight path. provides the necessary
trajectory changes.

The problem of attitude control of spinning rigid
bodies has not received much attention recently. al-
though some research has been reported on this topic
in the 1960's. The reorientation problem of a spin-
ning rigid body is conceptually different than the
simple rest-to-rest maneuver of a non-spinning rigid
body. Because of the spin of the body. application of
any moment about the transverse axes generates a
precessional motion. If the initial transverse angular
velocity is not zero. the problem becomes even more
difficult because the problem loses its svmmetry.

Athans and Falb? consider the problem of time-
optimal velocity control of a rotating body with a
single axis of symmetry. They show that for a single
fixed control jet. the system has the properties of a
harmonic oscillator. Thus, a switching curve can be
derived to implement the control scheme. The cases
of a gimballed control jet and two control jets are
also considered. No mention is made of the complete
attitude rearientation prohlem. however. Howe? pro-
poses an attitude control scheme for sounding rock-
ets. The main feature of this scheme is that it uses a
single control jet. The control jet is fired for a fixed
duration whenever certain conditions on direction
cosines or transverse angular velocity are satisfied.




This results in the alternate reduction of attitude er-
ror and transverse angular velocity. finally ending in
a limit cycle. Some other references!®4.1.5.78.12,15.13
discuss the problem of reorienting a rotating rigid
body which has no initial transverse angular velocity.
Windenknecht!® proposes a simple system for sun
orientation of spinning satellites. In this scheme, the
desired attitude is achieved by a succession of 180°
precessional motions, each resulting in a small at-
titude change (small-angle approximations assumed
valid), until the spin axis arrives at an attitude corre-
sponding to the dead zone of the sun sensors. Cole et
al.* prescribe the desired attitude change and solve
for the necessary torques but give no details on mech-
anization. Other papers which propose active atti-
tude control systems for spin stabilized vchicles have
been published by Adams!, Freed®, and Grasshoff”.
but none of these explicitly discusses the reorienta-
tion problem. Grubin® uses the concept of finite ro-
tations to mechanize a two-impulse scheme for reori-
enting the spin axis of a vehicle. If the torques are
ideally impulsive, then the scheme is theoretically
perfect. But in the case of finite-duration torquing,
considerable errors can result. Wheeler!® extends
Grubin’s work to include asymmettic spinning satel-
lites, but the underlying philosophy is the same. Por-
celli and Connolly!? use a graphical approach to ob-
tain control laws for the reorientation of a spinning
body. Their results are only valid for small angles
and small angular velocities. For this linearized case
they prove that a two-impulse conttol scheme is fuel-
optimal. Two sub-optimal control laws are then de-
rived for the case of limited thrust based on the two-
impulse solution.

None of the above papers consider time-optimal
reorientation of a spinning space body. The control
laws derived are based on small angle and/or im-
pulsive torque approximations. For large angle ma-
neuvers with limited thrust, sizeable errors can re-
sult becanse of these approximations. In the present
work we examine a practical scheme for the attitude
control of a spinning missile. The control scheme
proposed is not limited to small angles and small
angular velocities and the initial transverse angu-
lar velocity can be arbitrary, i.e., it is not assumed
to be zero. We have assumed no disturbances such
as aerodynamic forces, gravity, solar radiation pres-
sures, or structural damping. Because of the short
flight times, these disturbances have negligible effect
on the dynamics of the missile. These assumptions
yield a simple mathematical model deseribed by five
state equations, piz., two dynamical equations in-
volving the transverse angular velocities and three
kinematical equations giving the rates of change of
Euler angles. The theory of optimal control is used
to find a minimum-time control law.

Figure 1: Axes systems.

2. Equations of Motion

Figure 1 shows the orientation of the moving body
axes Iy, Y, 2y relative to the inertial reference axes
z;,yi, %, and also the Euler angles v, 6, ¢ relating
the two axis systems. The body axes origin is at the
missile ¢.g. with the r,-axis assumed to be the axis
of symmetry; the y,- and z;-axes lie in a plane per-
pendicular to the longitudinal axis, ;. The missile is
modeled as a rigid cylindrical body. We also assume
that the control jet is located in the zj-z, plane and
pointed in the direction of the zy-axis. When fired,
the control jet generates a constant positive moment
about the y-axis.

Since no moment is applied about the r;-axis, and
since Iy, = I, (the moments of inertia about the y;-
and :zp-axes are equal for a missile that is axially
symmetric about its ry-axis), it turns out that w,,
the missile angular velocity component along the z;-
axis, is a constant equal to the initial spin velocity
of the missile. We then obtain a set of five state
equations: two dynamical equations involving the
transverse angular velocities and three kinematical
equations giving the rates of change of Euler angles.

Thus
s :—(l—j—;).ﬂrwy (2)
v o= (wy SING + w, cos @) secl (3)
0 =wycosé—w,sino (1)
c‘S:u;r+(..;ysino+.u; cosd)tanf (")

where
wy,w, = trasverse angular velocity components

along the y- and z-axes, respectively,

v',0.0 = FEuler angles corresponding to yaw, pitch
and roll, respectively,

I, 1y the moments of inertia about the longitu-
dinal and transverse axes, respectively,




M, = the thruster torque about the y-axis.

For convenience we choose to write Egs. (1)-(5) in
terms of dimensionless variables and parameters in
accordance with the following definitions:

_— Wy —_
Qv‘w,'Qz—If
1 M
— iz —_— e
A=1-f0 =7

dimensionless time T = w,t

Now, if we redefine the — operator as differentiation
with respect to the dimensionless time T, the equa-
tions become

0, = AQ, + A, (6)
Q. = -A4Q, (7)

v = (Q siné + 9, cos o) sec § (8)
9=choso—Q:sino (9)

é=1+(stin¢+Q:cosc;)tan0 (10)

We assume that at the initial time. the missile
body axis system coincides with the inertial axis sys-
tem. The initial transverse angular velocity of the
missile, however, is non-zero. e thus obtain the
following initial conditions: :

QZ(TO) = QzO- Qy(TO) = Q3,10
L"(To) =0.8T) =0. 0(Tp)=0

The desired final conditions on the state variables
are given by:

Q(Ty)=0.Q,(T;) =0
w(Ty) = vq, 0(Ty) = 84. o(T;) = free

The numerical values for the two parameters, A4
and Ay, which will be used later in examples, are

A=09. 2, =002

This value of A corresponds to a length to diameter
ratio of 3.775 for a cylindrical body of uniform den-
sity. A missile weighing 10 Ibs. and having a uniform
mass density of aluminum would have the following
dimensions:

length = 12.30 in.. diameter = 3.26 in.

If the moment arm is half the length and the spin
velocity is 50 rad/sec.. Ay, = 0.02 corresponds to a
thrust of 2.79 lbs.

3. Solution for the Linearized
System

"« he equations of motion given by Eqs. (6)-(10) are
nonlinear and no analytic solution can be found for
the general case of arbitrary angles and angular ve-
locities. Considerable simplification can be achieved.

however, by assuming small angles and small trans-
verse angular velocity compared to the axial spin ve-
locity. For this linearized case. the equations of mo-
tion can be analytically integrated. These assump-
tions also vield some analytic results for the time
history of the time-optimal control.

3.1. System Equations and Optimal
Control Description

In order to get a simplified set of equations which
can be easily integrated and which yield analytic
solutions for the time optimal control. we assume
that ©,. Q. and @ remain small during the attitude
change maneuver. Eqs. (8)-(10) can then be written
as

v=Qysino+Q, coso (11)
§=Q,cos6—Q,sino (12)
o=1 (13)

Note that no assumption has been made on the mag-
nitude of v or . Eq. (13) can be integrated with
the initial condition o(7p) = 0 to give

6=T-Tp (14)

We assume To = 0 without loss of generality. Sub-
stituting this into Egs. (11) and (12) we obtain the
linearized equations of motion for the four state vari-
ables Q,. Q.. v'. and 6 as

Q, = AQ, + A, (15)

Q, = —AQ, (16)
v=0Q,sinT +9Q,cosT (17)
§=Q,cosT—Q,sinT (18)

These four equations can be written in the standard
state-space form by defining the state vector x as

x:iQy Q. v O]T

and the control u as
u=2A,

The standard form for the equations is

x = Ax + bu (19)
where
0 A 0 0
_ -4 0 0 0 5
A= sinI cosT 0 0 (20)
cosT —sinT 0 0

b=[100 0]" (21)




The initial state xq is given by
T
Xp = [ rio JI20 0 0 ]

We want to find a control which will take this initial
state to the desired state xy4

xa=[0 0 z34 r4g ]T

while minimizing the time.

The question of existence of an optimal control for
this class of problems is discussed by Cesari®. It is
proven that a bang-bang optimal solution exists for
the system described by x = A(¢)x(¢)+B(¢)u(f)fora
class of performance indices and constraints. He also
shows that there may well be optimal solutions which
are not bang-bang. However, if the opimal solution
is unique, it must be bang-bang (under certain con-
ditions on the states and constraints). At this time
no general theorems are available on the uniqueness
of optimal solutions for the one-sided controls. i.e..
0 € u € Umqgr. Therefore, we can only give necessary
conditions for u” to be an optimal control.

Proceeding with the derivation of the necessary
conditions on the time-optimal control. we write the
performance index

T,
J = / ldt ° (22)
To
with the given constraints )
x = Ax+ bu (23)
0<u< Umar (24)
The Hamiltonian can be written as
H=pTx-1 (25)

where p is the costate vector. The necessary condi-
tiuns for u* to be an optimal control are

x" :%% = Ax" + bu’ (26)

P = —%ii = -ATp" (27)

R

and

x{Ty} = x¢ (29)

x(Ty) = x4 (30)

p(Ty) = free (31)

p(Ty) = free (32)

H(Ty) =0 (33)

Eqgs. (26) and (27) are the differential equations for
the state and costate vector. Eq. (28) is derived
from the optimality condition i.e. maximizing the
Hamiltonian H. Eqs. (29) and (30) are the given
boundary conditions and Eqs. (31) and (32) are de-
rived from the transversality conditions. Hence, in
the problem we have 8 differential equations ( Egs.
(26)-(27) ) with 8 boundary conditions ( Eqgs. (29)-
(30} ) constituting a TPBVP (two point boundary
value problem). Eq. (33) is used to determine T;.

Eq. (27) can be solved analytically to obtain p as
an analytical function of the dimensionless time, T
and the initial condition, p(0). The expression for
the switching function p, is

3

pi = pircos AT + pasin AT — -1 (cos AT

P4
1—4

—cosT) + (sin AT —sinT)  (34)
where the initial conditions p; = p1(0), p2 = p=(0).
p3 = p3(0), and ps = p4(0) are constants to be de-
termined.

The expression for the control u* can now be writ-
ifS>0

ten as
. _ Umar
“=1o ifS<0

where for convenience we have defined S = p;. Eq.
(35) states that the optimal control is a bang-bang
type. A singular solution is not possible because if
S = 0 over some interval, that implies that p, =

(35)

p2 = p3 = ps = 0. This means that H = -1 for
all T. This contradicts the transversality condition
H(Ty)=0.

The switching function S will be periodic if A is
a rational number. However, it does not go through
zero at regular intervals, 1.e., the intervals between
successive times when 5 = 0 are not uniform. Thus.
depending on the boundary conditions. the constants
p1. P2, p3 and py will be different and each turn-on
and turn-off interval may be of a different duration.
Figure 2 shows the switching curve for 4 = 0.9, for
some values of the costate initial conditions p;, pa.
p3 and p4.

3.2. Two-pulse Solution

Starting at T = 0. typical time history curves for the
control u and the transverse angular velocity com-
ponents r, and rp, are shown in Figure 3 for the
case where the final target state is reached with two
thruster firings. The switch times, 71,72, T3 and Ty.
are the four unknowns. The thruster is fired from T}
to T2 and then from T3 to Ty.

The equations for £y and 7,5, which are exact, can
be integrated starting from any arbitrary initial con-
ditions at T; to obtain

2(TY = xy;cos (T -T;)
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+ (220 + %) sin AT - T)) (36)
r+(T) = (1‘3, + l—;) cos AT - T,)

. u -

—ry,sin AT -T)) - = (37)
A

The subscript i refers to arbitrary initial conditions.

Substituting Eqs. (36) and (37) into the equations

for £3 and r4 in Eq. i20). we obtain

I3 = ry,siniil =47 + AT,
+rIo,cos(il — T + AT,)
+l—;(r_oﬂ'(1—AsT*AT.)«msT)(-’iS)

ry = ri,coslil = T + AT,

—ra, sl = 4T - AT
" . . .
-L—lf—smu’i 1 - 4T + AT,) - sinTY39)
These can be easily tategrated with the given initial
conditions on r3 and r,. Thus we obtain

")
- N sina(l — 4)

I‘3"1.) = I3, +

[riysinfh—ad)+ ra,cos(h — ad))

2u 1 .
il Er cos(b — aA)sina(l - A)
— cos bsin a] (10)
2
z(T) = r4,+ -1 sina(l - 4)
(€15 cos(b—ad)— ra,sin(b— ad)]
: -1 .
+£§ [1 3 sin(b — ad)sina(l — 4)
+ sin bsin a] (41)
where
T-T, T+T,
q = —— b:
2 2

Since we now have expressions for r;. ra. r3. and
r4 as functions of the running time T and the given
initial conditions, we can obtain expressions for these
variables at T = T;. The procedure is to use Eqs.
(36)-(37) and (40)-(41) with T; = Ty and u = 0 to
obtain the state variables at T = T;. Then we let
T: = T1 and use the assocliated initial conditions with
U = Umgy to obtain the new conditions at T = T».
and so on. Finally. we end up with z,(7). z2(Ty).
r3(Ty). and r4(Ty) as functions of the boundary con-
ditions and Ty. T». T3 and T;. Since the boundary
conditions at T = Ty and T = Ty are known. this
procedure vields four equations in four unknowns.
T\, T5, T3 and Ty. The problem can be simplified.
however. by noting that T3 and 7y can be chosen
such that r{(Ty) = z2(Ty) = 0. In this way T3 and
Ty can be expressed as functions of Ty and T and
the problem is reduced to finding 77 and T, such
that z3(7) = r3 5 and r4(Ty) = r44. Since Ty and
T> cannot be expressed as explicit functions of the
imtial conditions. the problem must be solved itera-
tively.

This procedure of writing the nonlinear equations
x(Ty) = fix;.T;.72.T3.Ty) can be thought of as
a numerical integration method which uses the state
transition matrix of the system to integrate the state
from x(7T4) to x(Ty) in four time intervals of vari-
able duration. where over each interval the control
u remains constant. The state transition method to
simulate linear systems is discussed by Howe!”.

In Eqs. (36) and (37) we let T, = T». T = T3 and
u =0 and oltain

rig=ryocos A(IT3=Ta) 4+ raasin A(T3 —=To) (12)

rog = —ryasin A(T3=Ta)+roacos A(T3=T>) (13)
Now letting 7, = T3.T = Ty and u = tpy . we

obtain

r{Ty) = rpacosA(Ty = Ta)+ 2225 ATy - T

+2288 Sin A(T) = Ts)

(410




z2(Ty)
Z (cos ATy -T3) - 1)

Setting x1(Ty) = z2(T;) = 0 and using simple trig-
nometric relationships, we finally obtain

T3

-YIT

Clearly, adding <57 to T3 and Ty would still make
r(Ty) = x2(Ty) = 0. However. from Eq. (353)
and Figure 2, we observe that the intervals between
switches are never more than one period, iz
Hence, we limit T} € (0, q") and T3 — T» € (0. :’).
In the next section a condmon is derived which pro-
vides a check for the time-optimality of a two-pulse
solution.

3.3. Optimality of the Two-pulse
Solution

Figure 3 shows the time history of the control for the
two-pulse solution. Again, T} and T3 represent the
first and second turn-on times. and T» and T repre-
sent the first and second turn-off times. respectively.
From Eq. (35) (the necessary condition on control),

we know that
W= Umar if
10 if S

Since the boundary conditions are satisfied by the
two-pulse solution, we only have to check for the
above necessary condition. Thus, in order for the
two-piilse solution to be time-optimal. it should sat-
isfy the following condition on S.

y
Eq. (48) gives the necessary condition for the time-
optimality of a given two-pulse solution. We now
present a procedure to determine if the switching
times obtained satisfy the necessary condition on
the optimal control. We compute S(T) such that
S(Ty) = S(Th) = S{T3) = 0. Then S(T) is plotted
to see whether S(T) goes through zero at only T =

fl ‘fl
(=3

<0
>0

if T e (Ty
if T e (T

TorT € (T».T3)

T or Te(TyTy) 18

rz2c08 A(Ty — Ta) — xy 2sin A(Ty ~ Ta)
2

(45)

Example 1

0.0666666701
—0.0222222235
—0.0041141893

0.4101158694

Example 2
0.0282842708
0.0282842708
0.3913032919
0.1566834726

5.46257075
6.28533040
9.65781759
12.13034180

Boundary
Conditions

Turn-on
and
Turn-off
Times

T
I;
I3
I;

Table 1: Examples for the optimality test.

T1,T, or T3 or whether there are other T € (Tp, Ty]
such that S(T) = 0.

From Eq. (48) we know that S(T}) = S(T») =
S5(73) = 0. Thus, we can write

cos 4T1 sin ATl cosT)—cos AT, sin AT, —sin T,
1-A 1-A
cos ATy sin AT, == ;21___6,0‘! ::2 an :_’_’_-sm :2
. COS [ y—COS sin aA—S8in /3
cos ATz sin AT3 pyra— =5
Pi 0
Pl =10 (19)
P3 0
P4
One alternative way of writing this equation is
cos ATy sin ATy M‘f}%‘*’-‘l‘ ff
cos ATy sin AT, Mﬁiﬁ* 4
K H cosTy~cos AT, 2a
cos AT3 sin AT; 2 r”
sinT) —sin AT
I-A
sinTo—sin AT, (50)

sin Ty—sin ATy
I-A

This equation can be solved for £, £ and £ if the
3 x 3 matrix on the left hand sn&e 1S non- <mgular
Once py, pa.p3 and py are known, S can be plotted
as a function of the dimensionless time T and the
two-pulse solution can be checked to see if it satisfies
the necessary conditions on the optimal control. If
S =0 for some T € [To.Ty).T # Ti.T>.T3 then
the necessary condition is violated and we can reject
the switch times as non-optimal. However, if S =0
only for T = Ty, T». T3 and T € [Tp.1y] then the
switch times obtained remain candidates for being
time-optimal.

The mtial and
the desired final conditions and the corresponding
switch times for the two examples are given in Ta-
ble 1. The first example is shown as the solid curve
m Figure 4. It can be seen from this plot that § =0
only at the switch times Ty, Ty and T3 given in Ta-
ble 1 for Example 1. Therefore. the solution is time-
optimal. The dashed line in Figure 4 shows the sec-
ond example, where the two-pulse solution obtained
results in S(T) = 0 when T € [Ty, T\). Therefore.
this solution is not time-optimal.

Two examples are presented here.
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Figure 4: Switching function S vs. T.

4. Solution for the Nonlinear
System

In the previous section we linearized the system
equations and obtained some simple expressions for
the time-optimal control. A two-pulse solution,
based on analytic integration of state equations, was
derived. These analytic »xpressions are only valid
for transverse angular veiocities much smaller than
the axial spin velocity, and for small Euler angles.
When the transverse angular velocity is not of negli-
gible magnitude compared to the axial spin velocity
or the angles get relatively large, the analytic solu-
tions of Section 3 yield poor results. We consider
the complete nonlinear equations of motion in this
section and derive the necessary conditions for u” to
be an optimal control.

4.1. System Equations and Optimal
Control Description

We wish to find the time history of the control u
which takes our initial state to the desired state in
minimum time. In order to write a state variable
description of the system. we define the state x of
the system as

x=[9Q, 9 v 6 o

and the control u as

u=2x,
Eqs. (6)-(10) can now be written in the standard
form.
x = f(x) + gu (51)
where
.“‘J,‘g
—Al‘l
f(x) = (rysinrs + rocosrs)secry (52)

I|COSTg — IaSINTIs
I+ (zysinrs+ zacosxrs)tanry

-1

=[1 000 0] (53)

The initial state xq is given by

xoz[rlvo 20 0 0 O]T

We want to find a control which will take this initial
state to the desired state xy4

xd:[O 0 r34 Z44 free]T

while minimizing the total maneuver time.

Filippov® gives a theorem and proves the existence
of an optimal control for a Mayer problem. This the-
orem covers the more specific case of time-optimal
control of Eq. (4.1) under the given constraints and
the boundary conditions. We note that the existence
of an optimal control for the linearized system dis-
cussed in Chapter 3 can also be proven using the
more general Filippov’s theorem.

In order to derive an expression for the time-
optimal control, we write the performance index as

T
J = / 1dt (54)
To
with the given constraints
x = f(x) + gu (55)
0<u<umesr (56)
We can also write the Hamiltonian
H=pTx-1 (57)

where p is the costate vector. The necessary condi-
tions for u* to be an optimal control are

< = 2 _ gxty 4 gut (58)

op

) OH oy -
p' = % s (x*)p (59)
X
. _ Umar lfp; >0
u ‘{o if p} < 0 (60)
and

X(To) = Xp (61)
£(Ty) = 0.12(Ty) = 0,23(Ty) = 23.4. 24(Ty) = 244
(62)
ps(Ty) =0 (63)
H(T;)=0 (64)

Eqgs. (58) and (59) are the differential equations for
the state and costate vector. Eq. (60) is derived from
the optimality condition, 1.e., maximizing the Hamil-
tonian H. Egs. (61) and (62) are the given boundary
conditions and Eqgs. (63) and (64) are derived from




the transversality conditions. Furthermore, we note
from the theory of necessary conditions that

dH(x*,p*. T) _dH(x".p".T)
oT - dT

This, in addition to Eq. (64), shows that

=0

H(x*,p*.T)=0for all T € [Ty. T}]

Hence, the time-optimal control problem is described
by 10 scalar differential equations given by Eqs. (58)
and (59). The boundary conditions on the state and
costate variables are given by Eqgs. (61)-(63). This
constitutes a TPBVP (two point boundary value
problem). Eq. (64) is used to determine Ty. We
compare the results obtained in this section with the
results that were obtained for the linearized equa-
tions of motion in Section 3.1. The control obtained
in both cases is bang-bang and the switching is de-
termined by the costate variable corresponding to
(= Q). However, the expression for the derivative
of the costate vector in the nonlinear case cannot be
integrated analytically. For this reason, no simple
test for the optimality of the two-pulse solution for
the nonlinear case (to be discussed in Section 4.2)
analogous to Section 3.2 can be devised. Also, un-
like the linearized system where the Hamiltonian was
H

a function of time, ‘;—T- = 0 and therefore H = 0.

4.2. Two-pulse Solution

In Section 4.1 the necessary conditions for u* to be
an optimal control are derived. Ve find that the
solution to the time-optimal problem involves inte-
grating 10 differential equations with split boundary
conditions and an unknown Ty. Instead of trying
to solve this complex TPBVP (two point boundary
value problem), we propose a method which requires
integration of only the state equations with the un-
known switch times.

In this section we follow the same procedure used
previously in Section 3.2 to obtain the optimal switch
times Ty, Ty, T3, and T}y, except here we integrate the
state equations numerically instead of analytically.
This removes the required assumption of small an-
gles and small transverse angular rates and still leads
to the calculation of the two-pulse switch times T,
T», Tz, and Ty. However. no optimality test, anal-
ogous to the one in Section 3.3, can easily be de-
vised because of our inability to integrate the costate
equations analytically. Nevertheless, if the solution
to the nonlinear problem is close to the solution of
the time-optimal linearized problem, it is likely that
the solution will be time-optimal. To verify this hy-
pothesis, we generated several optimal trajectories
by varying the initial costate variables. By compar-
ing these trajectories with the trajectories generated

by the two-pulse solution, it is verified that this hy-
pothesis, t.e., the two-pulse solution to the control of
the nonlinear problem is time-optimal if it is close to
the time-optimal solution of the linearized system. is
indeed true.

4.2.1. Algorithm to Compute the Two-pulse
Solution

The procedure used here is basically the same as
in Section 3.2. However, instead of working with
linearized equations by assuming small angles and
small transverse angular velocities, we will employ
here the complete nonlinear equations of motion and
integrate them numerically. We can solve this prob-
lem by assuming initial trial values for T}, To, T
and Ty, integrating Eq. (51) numerically from T,
to Ty, and then updating the four time parameters
Ty through T} based on the difference of the desired
final conditions and the computed final conditions,
viz.,, o(Ty) — xy 4, £o(Ty) — L34, 23(Ty) — 234 and
z4(Ty) — rq,4. However, as in Section 3.2, we can
separate the problem into two parts. The param-
eters T, and T» affect only the final Euler angles
r3(Ty) and z4(Ty), whereas T3 and Ty are chosen
such that the final transverse angular velocity com-
ponents r;(Ty) and z,(Ty) are zero. The parame-
ters T3 and Ty, as given by Eqs. (46) and (47), are
simple analytic functions of Ty and T,. It should
be noted that these equations involve no approxima-
tions. These have been obtained by integrating the
transverse angular velocity equations, which are un-
affected by small angle and small transverse angular
velocity assumption. The algorithm to find T, Ts,
T3 and T} is the following:

1. Assume T, and T,

2. Integrate Eq. (51) from Ty to T} with u = 0
and from T} to 75 with u = upn,., (In order to
avoid discontinuities in the middle of an integra-
tion step, integration is carried out in patched
intervals with an integer number of steps in each
interval)

3. Calculate T3 and Ty from Eqs. (46) and (47)

4. Integrate Eq. (51) from T» to T3 with u = 0 and
from T3 to Ty with u = Upar

<

M eg(Ty) — r3.4] < ¢ and [eq(Ty) — raual < ¢
then stop. Else

6. Update Ty and Ty (For simplicity, the Newton-
Raphson update scheme is used)

-1

. Goto 2




Example 3 Example 4

Boundary 1,0 0.0666666701 | -0.0209311595
Conditions | z20 | -0.0222222235 [ -0.0651306177
I3zqd | -0.0041141893 | -0.2931263563

T4 d 0.4101158694 | -0.0395274245

Linearized | T) 1.72042500 0.34050073
System T, 5.27150921 3.44888253
T; 8.71603244 6.75078968

T! 10.47287320 R.72622400

Nonlinear T, 1.74532925 0.29424471
System I, 5.23598775 3.54733834
T3 8.72664626 6.69524732

Ty 10.47197550 8.72664626

Table 2: Comparison of linearized and nonlinear sys-
tems.
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Figure 5: The path of z,-axis in the r3-ry4 plane.

5. Examples

We consider two examples here. The given initial
conditions and the desired final conditions for the
two examples are listed in Table 2. Also shown
are the thruster turn-on and turn-off times obtained
from the solution of both the linearized and the non-
linear problem for the two examples. [t can be seen
that the results for the nonlinear system are close to
the results for the linearized system. Since we know
that the results for the linearized system minimize
the maneuver time. we conclude that the results for
the nonlinear system also minimize T;.

Figure 5 shows the path of the tip of a unit vector
along the missile ry-axis in the r3-ry space. where
r3 and r4 are the vaw and pitch angles measured
with respect to the missile body axes at the start
of the maneuver. The position of the target with
respect to the moving missile body axis system can
also be shown. As the missile ry-axis moves toward
the target direction. the angles r3 4 and r4 4 change
with time. We define a = cos~!(cosz3 ycosz44). In

—
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Figure 6: Total angle a vs. T.
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Figure 7: Path of the target in the z3 4-r4 4 plane.

other words. o is the total angular distance of the
target direction with respect to the missile ry-axis.
Figure 6 shows the angle a as a function of the di-
mensionless time T. We see that the attitude change
maneuver is completed in about 1.5 roll revolutions.
In Figure 7 the position of the target direction rel-
ative to the moving missile body axis system. given
by the yaw angle r34 and the pitch angle z44. is
plotted as the maneuver proceeds. An observer fixed
in the missile body will see the target move in this
fashion. The attitude change maneuver is completed
when r3g=1r44=0.

The total transverse angular velocity Q =
V*i + 3 is plotted as a function of the dimension-
less time T in Figure 8, where we recall z; = Q,
and o = Q.. As expected. Q becomes zero at the
same time a = 0. Figure 9 shows the time history
of r; and z, in the zy-rs plane. When the ry. 1,
trajectory radius. given by €, is constant in Figure
9. the missile coasts. Conversely, when the radius Q
changes. it means that the thruster is on.
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Control Scheme

The algorithm to find the thruster switch times
which minimize the total maneuver time requires it-
erations. These iterations can be costly in terms of
the time required for the solution to converge and
also in terms of the complexity of the iterative pro-
cedure. Hence, this procedure cannot be used in real-
time situations. The switch times can be stored on
an on-board computer as functions of the boundary
conditions. Table look-up and interpolation can then
be used to compute the switch times and implement
the attitude change maneuver.

In the exact solution, we compute Ty, T». T3 and
T; as functions of the initial angular velocities and
the desired Euler angles. A control law, however, can
be devised based on T} and T7 only. After the first
thruster firing has been completed, we can measure
the state variables at T». The switch times 7} and
T, can now be recomputed based on this measured
state. These new Ty and 75 correspond to T3 and
Ty, respectively, for the previous T} and T,. Thus
for the new T3 and Ty, Ty — T3 = 0. In the presence
of interpolation, numerical, or measurement errors
this will not be quite true. Nevertheless, in reality
this scheme would probably be superior because it
can correct for system and measurement errors by
introducing a feedback based on the latest state in-
formation.

the

7. Future Research

If the boundary conditions happen to lie outside the
subset of the state space within which a two-pulse
solution is time-optimal, the scheme given in Sec-
tion 6 cannot be used. e can, however, use the
geometric properties of the optimal control to gener-
ate a table of switch times as functions of boundary
conditions over the desired range of the state space.
This approach involves redefining the Euler angles
such that ¢(Ty) = 8(Ty) = 0. The roll angle o(Ty)
remains free as before. The state and costate equa-
tions can now be integrated backwards in time start-
ing at T = Ty, with specified o(Ty) and costate vec-
tor p(Ty). By varying these initial conditions over
the range of their possible values, we can generate
a table of thruster turn-on and turn-off times which
spans the entire subset of state variables for which
time-optimal solutions are desired. By storing this
table in an on-board computer and using table look-
up and interpolation to compute the firing times. this
scheme can be implemented in real time. Current
research focuses on creating this table and imple-
menting the control law using function generation.
The results of this approach will appear in a Ph.D.




dissertation!! as well as in other future research pa-
pers.
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Abstract

The interception of an ICBM at low altitude and
in a short time requires hyperbolic speeds. At the ac-
quisition time g, if updated information about the tra-
Jectory of the target dictates a velocity correction for
the interceptor, then it is of interest to assess the poten-
tial for interception. The reachable surface is defined
as the boundary of the set of all attainable points at
a given time t, for a fuel potential, conveniently ex-
pressed in terms of the Av available. Properties of this
surface are derived and its mathematical characteriza-
tion is obtained. As an application of the concept, a
necessary condition for a successful interception of a
target given in terms of a capture function is explicitly
derived.

Nomei.clature

A F =coefficients as defined in Eq. (18)

a =semi major axis

e =eccentricity vector

e =eccentricity

€z,€y,€; =components of e

f.9 =components defined by r = frg
+9vo

H =hyperbolic eccentric anomaly at
time ¢

h =angular momentum

h =magnitude of h

he hy, h, =components of h

i =inclination angle

k £ vo/ v,

p =semi-latus rectum
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Ri; =elements of the propagation ma-
trix as given in Eq. (10)

r =position vector at time ¢

r =magnitude of r

S(n,t) =reachable surface for impulse 7
at time ¢t

t =time

t =dimensionless time of flight defin-
ed in Eq. (8)

v =velocity vector at time ¢

ve =local circular speed at time tq

Uz, Uy, Vs =components of v

z,y,2 =components of position vector r

¥ =flight path angle at time ¢

A() =variation of ( )

é =elevation angle of Avy

€ =azimuth of Avg

n - Av/v,

v =true anomaly at time ¢

Subscripts

0 =at the initial time ¢,

1 =for the velocity, denotes the con-
dition after the impulse at ¢,

P =position on nominal trajectory

P =actual position of the interceptor

T =position of the target
Introduction

The ultilization of satellite-based missiles for in-
tercepting [CBM’s during their ascent constitutes one
of the major efforts in building a defense program. An
alternative approach is to use high performance, multi-
stage, earth-based interceptors. The very short flight
times and long ranges require hyperbolic speeds and a
high ratio of the take-off mass to payload mass.

In practice, precise information about the motion
of the target is only known during the last phase of the
interception. Thus the final interceptor stage for the




earth-based missile needs to be maneuverable so that
corrections in the-interception can be made. This is
conveniently expressed in terms of the potential char-
acteristic velocity, Av, which can be produced by the
rocket engine of the interceptor. Considering its rel-
atively small size, it is important to fully assess the
maneuverability of the interceptor.

P

)

Fig. 1 Geometry of the problem.

Suppose at the time t5, when we start the veloc-
ity correction, the position vector ro and the velocity
vector vg of the interceptor are known (Fig. 1). For
earth-based interceptor, the speed is hyperbolic and
the position is lower than the intended interception
point. For satellite-based interceptor, the speed is el-
liptic and the starting position is higher. But, it is also
possible that after the initial correction, the intercep-
tor accelerates to hyperbolic speed. With this in mind,
the exact formulas presented in this paper, except as
indicated for the series expansions, concern the motion
in this speed range. But the discussion and the char-
acteristic properties obtained are general. The time ¢,
1s the time when information about the trajectory of
the target has been updated to warrant changing the
course of the interceptor. Without correction, the in-
terceptor continues to move on its Keplerian trajectory
since we consider that the interception is achieved in
the vacuum. For each admissible velocity correction,
the position of the interceptor for flight in the vacuum
is known for each ¢ > tg. For a given fuel potential Av,
let the set of all positions admissible at time ¢ in three
dimensional space be denoted by D(t), which is called
the reachable domain at time ¢. Note that it is not nec-
essary to specify either the velocity of the target, or of
the interceptor to characterize an interception. Hence,
if a target position belongs to the reachable domain at

t, it may be intercepted by a suitable admissible veloc-
ity correction at to. It is the purpose of \his paper to
obtain a mathematical characterization of the surface
S(t) which bounds the reachable domain D(t).

Exact Calculation

If vy and vq are specified at ¢;, then the position
of the interceptor at any time ¢ is given by

r= fro+gvp (1)

where f and g are function of the time and they can
be calculated by the formulas in Appendix A. They
are given in the exact and explicit form and the only
numerical iteration involved is the solution of the Ke-
pler’s equation to obtain the hyperbolic anomaly H for
each given time t. We notice that the f and g functions
can also be computed using Taylor’s series expansions
as given in Ref. 1. Since the time of flight At =t — ¢,
is usually short, the use of these series, up to (At)® is
accurate. If an impulse Avg is applied at time o to
change the velocity to vi = vo+ Avg, the new position
vector as function of ¢, can be obtained by the same
formulas by changing vq into v;. For a given mag-
nitude Av, with all possible directions, the increment
Ar, from the nominal position Py (with Avg = 0) to
the actual position P (with Avg) describes the surface
S(t) which is the boundary of the reachable domain.
An example of tne surface is shown in *ig. 2. For the
numerical computation we have taken the gravitational
constant as unity and the imtial distance ry as the unit
distance.

m =0.1

m= 0.2

Fig. 2 The reachable surface with n; > n,.




Properties of the Reachable Domain

The potential for maneuverability of the intercep-
tor, in terms of the fuel consumption, is characterized
by the total characteristic velocity Av which can be
fractioned into several impulses Av;, applied at the dif-
ferent times ¢,. By definition, the reachabie domain is
the largest domain obtained at the time t and this in-
volves an optimization process using many impuises.
Optimal interception for this type of high thrust pro-
pulsion system has been discussed in Ref. 2 using the
primer vector theory and it has been shown that for
minimum fuel interception with time constraint, we
have the following possibilities:

1. One impulse applied immediately at the time ¢g.

2. One impulse applied at a later time t; > {o.

3. One impulse applied at the time tq, followed by
another impulse at mid-course at the time ¢,,.

If very short time is required, that is if At <
Atmaz where At,,,. is relatively small, then a unique
impulse applied at tg is optimal. We assume that the
necessary condition for this case is satisfied and denote
the strength of the impulse by the fraction n such that
Av = nu,, where v, is the circular speed at the distance
ro, that is v. = y/u/ro = 1. The boundary S(n,t) of
the reachable domain at the time ¢, using the impulse
with magnitude 5 will be referred to as the reachable
surface.

M

To

Fig. 3 Coordinate system.

If we use the coordinate system Mzyz with M
located at the initial point, and M z along the vector rg,
My orthogonal to it and in the initial plane of motion,
and Mz completing a right-handed orthogonal system
as shown in Fig. 3, then, the direction of the vector

impulse n is defined by the azimuth ¢ and the elevation
angle . Then, we first observe that, for finite t. S is a
surface, with curvilinear coordinates ¢ and 6. periodic
in € and é and has finite dimension. By continuity, it
i3 a closed surface.

We shall give some properties of this surface:

Two surfaces S(n;,t) and S(n,,t) for the same ¢
with my # m and m772 > 0 have no common point.
First, for any given vector 5, the resulting point P
at the time ¢ is uniquely defined. This is from the
uniqueness of the trajectory generated by the differ-
ential equation of motion with prescribed initial condi-
tion. Conversely, for any point P at time ¢, by Lambert
theorem, the orbit is uniquely determined and hence
vy at time f¢ and consequently Avg is uniquely de-
termined. The correspondance is one to one. Now, if
two surface S(m,t) and S(n3,t) have a common point,
from one to one correspondance, we must have n; = 1,
which contradicts the assumption.

We now prove

Lemma If 7, > 19 at the time t, the closed surface
S(ma,t) is enclosed by the closed surface S(m,t).

First, they can only be in a position such that one
encloses the other. Otherwise, let n approach 5, from
71 continuously. There must exist some 73, 772 < Y3 <
ny such that S(u3,t) and S(n2,t) have a common point
and this is not true.

Next, suppose that the opposite is true, that is
S{m,t) encloses S(n,t). Then, for any n < n; the
surface S(7, t) will also enclose the surface S(n;,t) since
if there exists 0 < 73 < 12 < 1y such that S(n3,t)
is inside S(n,t), there must exist some M < 75 <
n2 < np such that S(n4,t) has a common point with
S(m,t). On the other hand, since S(0.t) is a point,
S(n,t) should approach this point when n — 0. This
cannot happen if S(n,t) for all n < n, encloses the
finite surface S(m;.t). Hence, the lemma is proved by
contradiction. With this lemma, we have the following
property.

Theorem Given nmga: > 0. For any point P inside the
closed surface S(Nmaz.t), there erists a unique control
vector n, with 0 < n < nNmaz, such that the transfer
leads to P at ime t.

For any point P inside the given closed surface, by
Lambert theorem, there exists a unique control vector
n leading to the point P € S(n.t). If n > Nmar, by the
lemma S(n,t) encloses S(nmaz.t) which contradicts the
assumption.

With the previous analysis, we now see that the
potential for interception is dictated by the reachable




surface S(Mmaz,t), at maximum strength n = fmas for
the impulse. To have a mathematical characterization
of this surface, simply denoted by S(t) for each 7, we
use a moving coordinates system, parallel to the initial
system but centered at the nominal point P. Although
exact computation of Ar is available, for small values
of n as in the present case of small velocity correction,
it is convenient and accurate to compute its linearized
exoression. From Eq. (1), we have

or
Ar = EAVO (2)

where Avg is the velocity increment at t = ty. The
matrix dr/dvy is the propagation matrix. It is a func-
tion of the time and is completely determined in terms
of the initial condition on ry and vq. It is calculated
according to

%:ro(:—"fo)T+vo(:"—go)T+gI (3)

where I is the unity matrix and theé partial derivatives
are given in Appendix B. Again, the formulas presented
are general. They are not restricted to small time in-
terval At, and furthermore they can be used with any
orthogonal inertial system. Therefore, by repeated ap-
plication of the same program of calculation, we can
obtain the reachable surface for the case of multiple-
impulse interception.

By the transformation (2), it is clear that the
reachable surface S(t) is an ellipsoid whose principal
axes are proportional to the magnitude 5 of the im-
pulse applied. If the M zyz system as shown is Fig. 3
is used, then we have

rgo="ro i (4)

and
vo = kv (sinyo i+ cos o j) (5)

where g is the initial flight path angle and k is the
ratio specifying the initial speed in terms of the circular
speed v, at distance ry. In this case, it is easy to verify
that the two vectors 3f/8vo and 8g/3dvq in Eq. (3) are
lying in the Mzy plane and the propagation matrix is
of the form

or Ry Ri2 0
o R(t)=| Ry Raz O 6)
0 0 0 g

Let

Avg = nu.(sind i+ cosdcose j+cosdsinek) (7)

Then, by using a dimensionless time of flight ¢ such

that
t' =, /%(t —to) (8)
o

we have the equations of the reachable ellipsoidal sur-
face as defired by Ar/ro, in the form

A )
2z _ nRy1siné + nRy2cosécose

v
&
]

& 3

A y_ nRy; sind + nRaacos b cose (9)
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= =rngcosdsine
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It is clear that this surface is symmetric with respect to
the initial plane d=fined by ro and vo. If the reference
orbital radius ro corresponds to a circular orbit period
of 90 minutes, a flying time of 3 minutes is t' = 7/15
and we can use Taylor’s series expansion of up to the
order of t'° to have an explicit and accurate represen-
tation of R(t). The series apply to both the elliptic
and the hyperbolic range. We have then

1 | ,
Ry=t+ 5t13 - Eksm'yot 4
- %(181:2 — 11 - 54k?sin? 70)t'°
+ 51(—)k sin 70(90k’ — 51 — 150k?sin? 7o)t’6
—_ 1 4 § . '3
R, = kcos7o[4t - 5Icsm70t

— —(45k? - 33 — 225k% sin? 70)t""]

180
— 1 4 § : 5
Ro = kcos7o[4t - 5ksm7ot
- 2—14(6k7 -5 — 30k?sin’ m:"‘] (10)
/ 1 ! 1 : 1
Ryg =t - gt 3 + stm‘yot 4

+ l—éo(m? — 8 — 63k2 sin? 70)¢"°

_ 2—14ksin Yo(18k% — 5 — 26k? sin? yo)t'°
s 1, .
R”:gztl— 6t3+zk81n70t4

1 2 2.2 '3
+ 120(91: — 8 — 45k~ sin” ¥ )t

- %k sinyo(6k2 = 5 — 14k2sin® 1o)t"°

We notice that for very short time of flight, if we
neglect terms of order of ¢'* and higher, the propa-
gation matrix R(t) is a diagonal matrix. The princi-
pal axes of the ellipsoid are parallel to the initial axes.




Furthermore, since Ry = Raz = g, it is of revolution
about the z-axis.--

For an initial velocity vy such that ¥ = 2 and
v0 = 30°, we have generated the reachable surface
S(n,t) at the time t' = x/10, for the values of speed
correction 7y = 0.2 and n; = 0.1. As expected, the
surface S(n,,t) is inside the surface S(n;,t) and they
have no common point. This is shown in Fig. 2. The
computation has been done using the exact formulas
in Appendix A, and then the linearized version with
respect to Avg as given in Appendix B, and finally
the explicit series as given in Eqs. (10). For small n,
the propagation matrix R(t') computed from Eq. (10)
and the values from Appendix B have excellent agree-
ment. The relative errors in terms of the order of t'",

for n = 3,4,5,6 are shown in Fig. 4 where we have
defined

(11)

%error = max ||Ar, — Ar]j x 100
ffari=1

—

%ERROR
O =+ N ULPUDN®O©O
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Fig. 4 Error percentage with Taylor’s
series expansion.

In the following, the computation is done with the
series expansions.

As the reachable surface is propagated as function
of t, at each value of t, there exists a maximum distance
rmaz 30d a minimum distance rq,, for the interceptor.
By symmetry, it is obtained for ¢ = 0 and a certain
value of § which can be easily computed by solving
a quartic equation. Of global interest is the domain
which cannot be reached by the interceptor for any
value of t less than a prescribed t,na;. This domain
18 outside of a cone, with vertex at the imitial point
M which is the envelope of the reachable surface S(t).
This envelope is also symmetric with respect to the
initial plane (rg, vo).

Mathematically, for given n, we consider the equa-

tion of the reachable surface S(t), locus of all points P,
r, =r,(d,¢1). (12)

For each t, considered as a parameter, this is a
parametric representation with curvilinear coordinates

6 and ¢. The equation of the envelope is obtained by
eliminating t between this equation and the equation

?r_”. (81‘,, (13)

ot ar_,,)=0

35 . Oe

With vy = vo + Avp and Avyp given in Eq. (7),
and r, as given in Eq. (1) with v changed into v, we
have

a : )

Frt& = fprO + gp(Vo + AVO)

ar,, _ 31‘P 3Avo

36 = Gv, 9% (14)
Orp _ Orp 94vo

Be ~ Ovy Oe

We can then perform the exact computation of the en-
velope using the formulas in the Appendices A and B.
Figure 5 shows the envelope for the case where k = 2,
0 = 30° and n = 0.1. With small speed correction,
the cone envelope is near the nominal trajectory and
for clarity the plot is expanded for the time interval
077 <t/ < .107.

te
<

Fig. 5 The cone envelope of the reachable
surface.

For small velocity change, if the linearized equa-
tions are used, then

r r
£ - -+ R(t’)AVo
(1} To

(15)




where with the dimensionless time of flight ¢, and by
Taylor’s series, the-propagation matrix R(t') is given
in Eq. (10), and Avg in Eq. (7) with v. = 1, and with
the coordinates of the reference point Py being

:PD _ = - . V) _ l 12 l . 3
- =2, =1+ ksinygt 2! +3lcsm-yot
1 2 2.:.2 4
+ 24(31c 2 — 9k*sin® yo)t
1, . 2
+ 60ksm7o(—18k + 11
. 1
+ 30k?sin? yo)t'® + o5 {5(90k* — 54

— 105k? sin? v )k? sin’ v,
— (22 - 66k% + 45k }¢'°  (16)

Ye, _ - 1,3 1, . 4
= = = L - !
o = Yp, kcos7o{t 6t +4Icsm702

+ -12—10(91c2 — 8 — 45k?sin® yo)t'°

- -;aksin ~o(6k? — 5 — 14k sin? 70)t'*}

:EP°=0

N
3 s

With the series solution, simple computation of
the envelope can be done by considering its intersection
with the plane making an inclination angle ¢ with the
initial reference plane. First for i = 0, we have ¢ = 0
and Eq. (13) becomes

Asin? 6 + Bcos? § + Csinécos

+ Dsiné+ Ecoséd=10 (17)

where

A = n(Ri2Rs1 = R Ryy)

B = n(RnRi2 - RuRy)

C = n(Ri2R22 — RazRiz + R Ry — Riy Ray)(18)
D=-z, Ry + yp, Ra2

E = ipoRZI - yPORu

with the R;; given by Eq. (10) and z, and y, by
Eq. (16). Equation (17) can be transformed into a
quartic equation in tané/2. After solving for §, we
substitute into Eq. (15) to have the equations of the
envelope.

If we intersect the cone by a plane, making an
angle ¢ with the initial plane, then by simple geom-
etry, it appears that it behaves like that in the new
plane, the initial velocity has components ksiny¢ and
kcosypcosi and the planar impulse has the elevation
angle 8 with magnitude

n = \/1;2 ~ k2 cos?ygsin?i (19)

T/

Hence, in the computation of the intersection of the
cone envelope by this plane, it suffices to replace in
Egs. (15) and (18) n by n’ and in the functions R;;
and z, and y, we leave ksinyo the same but replace
kcosyg by kcosyocosi and consequently we replace
k% by k?(sin?vo + cos? yocos?i). For each value of i
we have two intersecting curves and at the maximum

inclination n

k cosvg

Sil tmar = (20)
the two lines concide, being the contact line between
the envelope and the plane i#,,,,. This line is the tra-
jectory in the plane i{n4, with initial velocity compo-
nent k sin v and k cos o cos i and zero velocity change.
Hence, it is given explicitly by the equations (16) with
the necessary change for the terms k cosy, and k2.

Condition for Interception

At this point, it is relevant to specify the prob-
lem. The interceptor is launched on its nominal tra-
jectory only after some preliminary information about
the target motion is acquired. The problem of mini-
mum fuel intercepting an ICBM at low altitude using
a multi-stage earth-launched rocket has been discussed
in detail in Ref. 3. For long range and short time in-
terception at low altitude the interceptor must accel-
erate to hyperbolic speed and use aerodynamic lifting
force generated by its last stage to follow the curva-
ture of the earth. The last phase is the ascent in the
vacuum for interception with the initial condition such
that vy & 2v,, 7o = 0 and rg at near the top of the at-
mosphere. The duration of this last phase is between
2 and 3 minutes. If at the beginning of this phase, at
t = ly, updated information about the trajectory of
the target is received, correction should be made. Let
r-(t) be the newly revised position vector of the tar-
get whose position is denoted by 7. We can evaluate
the relative position from the nominai point Py of the
interceptor to the target T

Py T = Ar, (21)
as function of ¢ near the intended interception time t;.
If there exists a value of t such that the target is in-
side the reachable surface, then certainly, interception
can be achieved. Mathematically we define a capture
function using normalized variables

(R21 Az — R Ag)?
(Ri1R22 = Ri2R21)?
(Rp2AF — RpA§)?  Af?

+ +
(Ri1R22 — RiaRn1)? R

F(AE A AS ) =

(22)




We notice that, by setting F = n?, we have the equa-
tion in Cartesian-coordinates of the reachable surface
at the time t’. Then, let Az, Ay, and Az, be
the components of the relative position vector Ar, /ro.
The condition for capture is then

F(Az,, Ay, Az, 1) < P (23)

As a simpie illustration, cozsider the function to the
order of #'>. The equation for the reachable ellipsoid is

Az?
t2(1+1%/3)2
Az?

Ayt
t3(1 -2 /6)2

=0 (24)

It is interesting to notice that although the propagation
matrix R(t') depends on the initial speed vy = kv,
and flight path angle vo, to the order of 3 included,
it is independent of vo. This can be explained that
although the reachable domain D(t’) as it moves away
from the initial point depends, on any order in t', on k
and 7o, because the nominal position P, depends on vo,
the deviation of the actual position P of the interceptor
from P, for short time interval is mainly influenced
by the impulse Avy. The coordinates of the nominal
position Py can be computed by either using the exact
formulas in Appendix A, or more conveniently by the
Taylor’s series (16) valid for the whole range of speed.

The actual position P of the interceptor is r, =
(£5,Yp,2p). Its coordinates can be obtained using the
same series with the following change

ksinyo — ksinyo + nsiné = (v,, /v.)

kZsin? yo — (ksinvo + nsin §)? = (vz, /v.)?
kcosyo — kcosyo+ ncosécose = (v, /v.)

k? —[k? + n* + 2kn(sin yo sin 6 + cos o cos § cos €)]
= (vl/vc)2
Notice that, this is simply a change of definition of the

various terms. The new velocity v; has a lateral com-
ponent nu. cos § sin¢. This gives the lateral coordinates

e

—£ =gncosésine

e (25)
where the function g(t') is calculated from the last
equation (10) with the change in k sin 7o, k? sin v, and
k? as above. By linearizing with respect to n and eval-
uating the difference Ar/ry, we have the equations (9).

Returning to Eq. (24), for a time interval of ¢/ =
x/15 (about 3 minutes), the principal axes of the el-
lipsoid are AZme; = 021251, Afmar = AZmgr =
0.20797. It is nearly a sphere. With a maximum veloc-
ity correction of 600 m/sec, we have n = 0.0759. The
capture radius is Ar = 0.0158r¢ and it is about 100
km.

Conclusions

In this paper we have introduced the concept of
the reachable domain, which is the set of points at-
tainable at the time t by an interceptor flying in the
vacuum about a spherical earth and using a fuel poten-
tial represented by a total characteristic velocity Av.
We notice the fact that at high orbital speed and for a
relatively short time duration from an initial time ¢o,
the largest domain is obtained by using the total im-
pulse applied at the time t5. This domain can be ex-
actly calculated using the classical equations in astro-
dynamics. General properties of the reachable surface
which is the boundary of the reachable domain were
derived. To have a mathematical characterization of
the reachable surface, for small velocity change, we use
a linearized version and derive the partial derivatives
to calculate the propagation matrix R(t), whick is the
mapping of the velocity change Av, into the position
change Ar. With this linearization, it is seen that the
reachable surface is an ellipsoid and it is approximately
a sphere for small time interval. As the time varies, the
ellipsoid generates a cone which contains the totality
of the trajectories of the interceptor.

As an application of the reachable domain, we
have considered the case of interception of a target dur-
ing its last phase. If the revised information on the tra-
jectory of the target, obtained at the acquisition time
to, dictates a change of the course of the interceptor,
then a capture function derived in explicit form can be
used to assess the feasibility of the interception for any
given Av.

Another possible application of this concept is in
the case of several space launching bases either on the
same orbit or on a system of orbits. Then, with the
knowledge of the possible launch site of the ICBM,
and its typical trajectory, we can compute the intended
landing area and evaluate the requirement for its de-
fense in terms of the number of the space launching
bases and their orbital characteristics.

This paper discusses the case of impulsive change
in the velocity. The case of continuous thrusting is
obviously of interest and is currently under study by
the authors.




Appendix A Nominal Trajectory Equations

Given at g,

ro=2zol+yoj+ 20k,
Vo = Ugg i+ vy J+ U, k.

Then with 4 = 1 the nominal trajectory can be com-
puted by the following procedure,*

h=hi+h,j+h, k=rgxvg

e=eit+e,j+e, k=-hxvy—ro/r
p=h?
__D
6= (for e > 1)
sinyg = —=rp - Vo
roé
Top-€
cosyy =
o€
Yo sin vg

tan — = ————
a.n2 14+ cosyg

Ho e—1 Vo
t -—= -
anh =5 et1 072
(t = to)a~¥? = e(sinh H — sinh Hy) — (H — Ho)
( H can be computed for a given t)

v e+1 H
tan - = tanh —
an2 e—lan 2

P
1+ ecosv

f=1- i[l — cos(v — vp)]

g=Tsin(u—uo)
1 (v =) 11 = cos(v — 1)
f_hta.n 3 [ »
1 1
i 7

r= fro+gvo

i':f;l'o +gVo

Appendix B Variational Trajectory Equations

Upon the application of a small impulse Avg at
to, the variation of the trajectory can be computed by
the following prodedure

oh

dvo

vy O cos iy
- tan —

aVo

oh |0 —n w
b—V_ = 20 0 -2y
0 —Y Zo 0
S (Y
aVQ - h 3v0
op _,, Oh
ve = v,
0 hs —hy
36:—!- = | -h; 0 h,
0 hy, =-h, 0
0 —Vszo Uyo
+ Vio 0 —Vz,
~Uyo Uz 0
de 17 0e\T
= (7)) ©
da 1 dp Je
Ovg  e2-1 (avo 2e“avo)
dsinyg _ (1 Oh 1 fe h
aVo - (h aVo - eaVo)smVo+ rocro
Ocoomy _ L, 0 L (BT,
Bvo - 4 uoaVo rp€ 3"0 0 .
dtanvy/2 _ 1 dsin v
dvg ~ l+4cosvg\ 8vy 2
Jtanh Ho/2 _ tan v /2 ﬁ
Ovo T (e+1)Ve2—18v
+ /e ~138tanyg/2
e+1 8vg
O0Ho _ dtanh Hp/2
ve (1 + cosh Hy) Bvo
OH _ ___ 3(t=to)/2 da
dvo  a3%/2(ecosh H — 1) vg
B sinh H — sinh H, _Bi
ecoshH -1 Jdvg
ecosh Hy — 1 0H,
+ ecosh H — 1 8vq
dtanv/2  tany/2 Be_
vy (e2 — 1) Ovq
+ fe +1 1 ?ﬂ
e — 11+ cosh H dvg
dsinv _ dtanwv/2
Bve cos v(1 + cosv) Fvo
Gcosv . dtanv/2
ave —siny(1l + cosv) Bve

)




ﬁ- = :(ﬁp_ - rcoeyie—- - reacosy)
aVo p 6Vo 0Vo @Vo
af 1 or r dp
6_V; = -p-[l—‘:oc(l/—l/o)](—g0 +;m)
+:(cosuoacosu +cosy6cosu2
P 0\'0 6Vo
+sinuoasmy +sinu35inuo)
aVQ 6vo
_é@tg; = Ihgsin(u - uo)ngo
L) sin(v — uo)ﬁ-
p dvo
+:r—°(cosuoiml +sinuacosu0
h ov dvo
_sinuoc’)cosu — asinuo)
6v0 (9Vo

% = ro(-gv%)T+vo(ba-‘%.-)T+gI

The variation of trajectory is approximately com-
puted by

Or
Ar = 5;5 AVO .
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A SCHEME TO GENERATE THRUSTER FIRING
TIMES FOR THE TIME-OPTIMAL
REORIENTATION OF A SPINNING MISSILE

E. Jahangir* and R. M. Howe**
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A bstract

A scheme to generate thruster firing times as func-
tions of the initial and the desired state of a spinning
missile is described. The missile is modeled as a rigid
body which is symmetric about one axis and which
has a large roll rate about this axis of symmetry.
Control is achieved by a single reaction jet which,
when fired, provides a constant moment about a
transverse axis. Disturbance torques are assumed
to be zero. The missile is assumed to have some ar-
bitrary initial transverse angular velocity and it is
desired to take it to some final attitude in minimum
time while reducing the transverse angular velocity
to zero. This minimum-time reorientation problem
is usually handled by solving a TPBVP (Two Point
Boundary Value Problem). The control history thus
obtained is stored in an on-board computer and im-
plemented on-line by table look-up. We describe a
scheme which does not need to solve a TPBVP. In-
stead, coordinate transformations are used such that
each backwards integration of the transformed state
and costate equations yields a unique time-optimal
trajectory. By storing the state and the .issociated
time-optimal control at discrete points in time, a set
of boundary condition points can be generated for
which the minimum-time control is known. This set
of points can later be used to generate a table of
thruster firing times as functions of the current and
the desired state of the missile. Some examples are
plotted to illustrate the application of the concepts
presented.

Over the past three decades many papers and re-

ports have treated various aspects of homing schemes
and trajectory control associated with these schemes.

*Ph.D. Candidate in Aerospace Engineering
Student Member, AIAA
**Professor of Aerospace Engineering
Associate Fellow, AIAA

Most of these papers consider surface-to-air or air-to-
air missiles which use aerodynamic forces for trajec-
tory control. With the advent of SDI, much atten-
tion has been focused on the interception of satellites
or ICBM’s outside the sensible atmosphere. Hence,
aerodynamic forces cannot be generated for vehicle
controi. Instead, the thrust of a rocket engine is used
to provide the necessary maneuver forces, with ve-
hicle attitude control employed to point the thrust
in the desired direction. Conventional thrust vector
control systems tend to add both weight and com-
plexity, and as a result counter the objective of min-
imizing the weight of the guided warhead. The sim-
plest control involves a single thruster at right angles
to the spin axis of the missile. In this scheme’ the
missile is given a large roll rate and the thruster is
turned on for a fraction of each revolution in rol: and
at the right time during each roll cycle so that the de-
sired attitude changes are achieved. Meanwhile the
main thruster, by producing a thrust component per-
pendicular to the flight path, provides the necessary
trajectory changes.

The problem of attitude control of spinning rigid
bodies has not received much attention recently, al-
though some research has been reported on this topic
in the 1960’s. The reorientation problem of a spin-
ning rigid body is conccptually different than the
simple rest-to-rest maneuver of a non-spinning rigid
body. Because of the spin of the body about its
symmetry axis, application of any moment about
the transverse axes generates a precessional motion.
If the initial transverse angular velocity is not zero.
the problem becomes even more difficult because the
problem loses its symmetry.

Athans and Falb? consider the problem of time-
optimal velocity control of a rotating body with a
single axis of symmetry. They show that for a single
fixed control jet, the system has the properties of a
harmonic oscillator. Thus, a switching curve can be
derived to implement the control scheme. The cases
of a gimballed control jet and two control jets are
also considered. No mention is made of the complete
attitude reorientation problem, however. Howe® pro-




poses an attitude control scheme for sounding rock-
ets. The main feature of this scheme is that it uses a
single control jet. The control jet is fired for a fixed
duration whenever certain conditions on direction
cosines or transverse angular velocity are satisfied.
This results in the alternate reduction of attitude er-
ror and transverse angular velocity, finally ending in
a limit cycle. Some other references!®3.1.5.6.7.12.15,13
discuss the problem of reorienting a rotating rigid
body which has no initial transverse angular velocity.
Windenknecht!® proposes a simple system for sun
crientation of spinning satellites. In this scheme the
desired attitude is achieved by a succession of 180°
precessional motions, each resulting in a small at-
titude change (small-angle approximations assumed
valid), until the spin axis arrives at an attitude corre-
sponding to the dead zone of the sun sensors. Cole et
al3 prescribe the desired attitude change and solve
for the necessary torques but give no details on mech-
anization. QOther papers which propose active atti-
tude control systems for spin stabilized vehicles have
been published by Adams!, Freed®, and Grasshoff®,
but none of these explicitly discusses the reorienta-
tion problem. Grubin uses the concept of finite rota-
tions to mechanize a two-impulse scheme for reorient-
ing the spin axis of a vehicle. If the torques are ide-
ally impulsive, then the scheme is theoretically per-
fect. But in the case of finite-duration torquing, con-
siderable errors can result. Wheeler!® extends Gru-
bin’s work to include asymmetric spinning satellites,
but the underlying philosophy is the same. Porcelli
and Connolly!3 use a graphical approach to obtain
control laws for the reorientation of a spinning body.
Their results are only valid for small angles and small
angular velocities. For this linearized case they prove
that a two-impulse control scheme is fuel-optimal.
Two sub-optimal control laws are then derived for
the case of limited thrust based on the two-impulse
solution. Most recently, Jahangir and Howe!! have
proposed a time-optimal scheme which does not re-
quire solving a TPBVP. This scheme can be used
for the specific case when only two thruster firings
are sufficient to complete the time-optimal attitude
change maneuver. If the boundary conditions hap-
pen to lie outside this subset of the state space, the
algorithm given by Jahangir and Howe fails to con-
verge, since there does not exist a two-pulse time-
optimal solution for such a case. If a control law is
desired for boundary conditions which require more
than two thruster pulses, we must solve a TPBVP
involving ten nonlinear differential equations.

Both the two-pulse solution and the multiple-pulse
solution require iterations and, therefore, can be
costly in terms of the computer time required for the
solution to converge and also in terms of the com-
plexity of the iterative update scheme. Hence, an on-
line iterative procedure does not appear to be prac-

Figure 1: Axis systems.

tical for a real-time control algorithm. One possible
alternative is to precompute the thruster firing times
by solving a TPBVP for discrete values of the desired
boundary conditions. These thruster firing times can
then be stored as a table in an on-board computer
and the control scheme can be implemented in real-
time by table look-up and interpolation.

Since we must store the control history as a func-
tion of the boundary conditions, we look for ways to
generate a set of boundary condition points for which
the thruster firing times are known without solving
an iterative problem. To this end a new state vector
is introduced in Section 4 which is related to the orig-
inal state vector by a transformation. We will show
in Sections 5 and 6 that we can generate a trajectory
on the boundary of the set of reachable states by as-
suming a set of final conditions and integrating the
transformed state and costate equations backwards
in time. Since the boundary of the set of reachable
states defines all the minimum-time trajectories, we
can obtain all the desired boundary conditions and
the associated time-optimal control histories by vary-
ing the final conaitions over the range of their possi-
ble values. Finally, in Section 7 we illustrate the pro-
cedure by plotting some example time-optimal tra-
jectories.

2. Equations of Motion

Figure 1 shows the orientation of the moving body
axes Ip,ys.>s relative to the inertial reference axes
Zi. Y, 2i, and also the Euler angles v, 8, ¢ relating
the two axis systems. The body axes origin is at the
missile ¢.g. with the ry-axis assumed to be the axis
of symmetry; the y,- and zy-axes lie in a plane per-
pendicular to the longitudinal axis, zy. The missile is
modeled as a rigid cylindrical body. We also assume
that the control jet is located in the z3-2zy plane and
pointed in the direction of the z;-axis. When fired,
the control jet generates a constant positive moment
about the y;-axis.

We have assumed no disturbances such as aero-




dynamic forces, gravity, solar radiation pressures,
or structural damping. Because of the short flight
times, these disturbances have ncgligible effect on the
dynamics of the missile. Since no moment is applied
about the z;-axis, and since [, = /. (the moments
of inertia about the y;- and z;-axes are equal for a
missile that is axially symmetric about its z;-axis), it
turns out that w_, the missile angular velocity com-
ponent along the zy-axis, is a constant equal to the
initial spin velocity of the missile. We then obtain a
set of five state equations: two dynamical equations
involving the transverse angular velocities and three
kinematical equations giving the rates of change of
Euler angles. Thus

Wy = (l—%)u,uz+‘—l‘? (1)
sr== (12 F ) ooy ®)
% = (wy sin ¢ + w, cos ¢) sec (3)
é:w,,cos¢>—w,sin¢ (4)
$=u,+(wy sin ¢ + w; cos¢)tand (5)

where
wy,w; = trasverse angular velocity components

along the y- and z-axes, respectively,

¥,0,¢ = Euler angles corresponding to yaw, pitch
and roll, respectively,

I:, I, = the moments of inertia about the longitu-
dinal and transverse axes, respectively,

M, = the thruster torque about the y-axis.

For convenience we choose to write Eqs. (1)-(5) in
terms of dimensionless variables and parameters in
accordance with the following definitions:

Q=22 Q, =%
y we ! z w{’
— 1L —
=1 TT'AV_I,,U,

dimensionless time T = w,t

Now, if we redefine the — operator as differentiation
with respect to the dimensionless time T, the equa-~
tions become

Q, = AQ, + A (6)

Q, = —AQ, (7)
u‘):(stino+Q, cos ¢) sec§ (8)
9=Qy cos ¢ — 2, sin @ (9)

=1+ (Qsin¢+ Q, cosd)tand (10)

In order to write a state variable description of the
system, we define the state x of the system as

x=[9Q Q2 v 0 o]

and the control u as
u=JAy

Eqgs. (6)-(10) can now be written in the standard
form.

x =f(x) +gu (11)

where

A.‘L‘z
—A.‘El
(zysinzs + 22 COS T5)sec Iy
I1COSZTy — Z28INTs
L4 (zy8inzs + za2conzs)tanzy 1

f(x) = (12)

T
g=[10 00 0] (13)
We assume that at the initial time, the missile body
axis system coincides with the inertial axis system.
The initial transverse angular velocity of the missile,
however, is non-zero. We thus obtain the following
initial condition:
T
Xo = [ Tio0 %20 0 00 ] (14)
We want to find a control which will take this initial
state to a desired state, described by some non-zero
desired yaw and pitch angles and zero final transverse
angular velocity, in minimum time. The desired final
state vector, x4, can be written as:
T
xg=[0 0 z34 z44 free] (15)
We also assume an upper bound umaz on the control
u. Thus, the constraint on the control can be written
as:
0 < u< tUmar (16)
The numerical values for the two parameters, A4
and Umgz, which will be used later in examples, are

A =09, ungr =0.02

This value of A corresponds to a length to diameter
ratio of 3.775 for a cylindrical body of uniform den-
sity. A missile weighing 10 lbs. and having a uniform
mass density of aluminum would have the following
dimensions:

length = 12.30 in., diameter = 3.26 in.

If the moment arm is half the length and the spin
velocity is 50 rad/sec, Umq, = 0.02 corresponds to a
thrust of 2.79 lbs.




3. Time-Optimal Control
Formulation

The problem, as stated in the previous section, is
to find a control u(T) which takes the initial state,
Xg, to the desired state, x4, in minimum time while
satisfying the constraints x = f(x)+guand 0 < s <
Umar. This is one specific case of a general Mayer
problem. Filippov* gives a theorem and proves the
existence of an optimal control for a Mayer problem.
At this time no general theorems are available on
the uniqueness of optimal solutions for the one-sided
controls, i.e., 0 < ¥ < umqz. Therefore, we can only
give necessary conditions for u* to be an optimal
control.

In order to derive an expression for the ‘ime-
optimal control, we write the performance index

T,
J = 1dt
To

(17

We want to minimize the performance index J under
the constraints of Eq. (11) and (16). Thus, we can
write the Hamiltonian

H=pTx-1 (18)
where p is the costate vector. The necessary condi-
tions for u* to be an optimal control are

x =%=f(x)+gu {19}

. __ é_fi - » .
BT = - 5= = H(x") (20)

o« _ ) tmar ifp] >0
u ‘{o if p} < 0 (21)

and

x(To) = xo (22)
x(Ty) = x4 (23)
p(Ty) = [ free free free free free ]T (24)
p(Ty) = [ free free free free 0 ]T (25)
H(Ty)=0 (26)
where H(x) = —8f/9x. Eqs. (19) and (20) are

the differential equations for the state and costate
vector. Eq. (21) is derived from the optimality con-
dition, 1.e., maximizing the Hamiltonian H. Egs.
(22) and (23) are the given boundary conditions and
Egs. (24)-(26) are derived from the transversality
conditions. Furthermore, we note from the theory of
necessary conditions that

OH(x*,p".T) _ dH(x*,p*.T) _

aT dT

0

This, in addition to Eq. (26), shows that
H(x*,p*,T) =0 for all T € [T, T}

Hence, in the problem we have 10 differential equa-
tions (Eqgs. (19) and (20)) with 10 boundary con-
ditions (Eqs. (22)-(25)) constituting a TPBVP. As
mentioned earlier, the solution of this problem re-
quires iterations and, therefore, is difficult to imple-
ment in real-time. In the actual missile, thruster
firing times are computed off-line and are stored as
a table in an on-board computer. Function gener-
ation is then used to compute the thruster turn-on
and turn-off times as functions of the boundary con-
ditions.

Tnstead of obtaining the thruster switcli viuies by
solving this iterative problem, we consider aa alter-
native approach in the next section. An alternative
optimal control formulation in terms of a new state
vector is given. It is shown that, by assuming a set of
final conditions and integrating backwards in time,
we can generate time-optimal trajectories in the state
space.

L An Alf ive F lati
of the Time-Optimal
Control Problem

We define a new reference axis system. This axis
system is fixed in the target and its z-axis points
along the desired direction of the missile z3-axis. The
orientation of the missile with respect to an observer
fixed in the target is given by the Euler angles, ys,
ya, and ys, where y3, y4, and ys correspond to yaw,
pitch and roll, respectively. We also define y; = r,
and y; = z,. Thus, we can write a new state vector

T
y={wn v v v ys |

The two state vectors x and y are related by a trans-
formation (see Section 6.3 for the transformation re-
lations). The equations of motion can be written in
terms of this new state vector and are given by:

y = f(y) + gu (27)

We assume the initial and final conditions, respec-
tively, to be

T
y(To) =0 = { Yivw Y20 VY30 Y40 Yso0 ]
(28)

T
y(Ty)=y;=[0 0 0 0 free (29)
A time-optimal control problem can be formulated
for this system, similar to Section 3. We want to
minimize the maneuver time, so we can again write
the performance index as

T,
J=/ 1dt (30)
To




under the constraints of Eqs. (23) and (16).
Proceeding with the derivation of the necessary
conditions on the time-optimal control, we write the
Hamiltonian
H=q"y-1 (31)
where q is the costate vector. The necessary condi-
tions for u* to be an optimal control are

"_Q{__ L] L]
y' = 3q—f(y)+su (32)
'._ a—H_ - -
q ——ay—H(y ) (33)
. _ Umaz ifq{>0
u ‘{ 0 ifg]<0 (34)

The boundary conditions on the state variables are
given by Eqs. (28) and (29). The boundary condi-
tions on the Hamiltonian and the costate variables
are derived from the transversality conditions:

H(T})=0 (35)

a(To) = qo = | free free free free free ]T
(36)

q(Ty) = qy = [ free free free free 0 ]T (37)

We observe that this formulation still results in a
TPBVP. If the initial state vector, y(Tp), is specified,
an initial costate vector, q(Tp), must be determined
which results in the desired final state and costate
vectors. However, the state and costate vectors at
the final time have some simple features. Each of
the components of these vectors is either zero or free.
Therefore, it is worthwhile to examine the system
characteristics if the state and costate equations are
integrated backwards in time starting at Ty.

In the next section we discuss a two dimensional
system in terms of some simple sets in the state and
costate space. By looking at the problem from a
geometric point of view, we show for this 2-D sys-
tem that the origin can be connected to all points
in the set of reachable states in minimum time by
varying the costate vector over R? and integrating
the system equations backwards in time. We note
that this procedure of integrating the system back-
wards in time is fairly common. The most familiar
example is the simple inertia system, £ = u. In this
system the state equations are integrated backwards
in time, using the time-optimal control, to obtain a
switching curve in the state space.

In Section 6 we apply this scheme to the complete
nonlinear minimum-time attitude control problem of
a spinning missile. Using the procedure analogous
to Section 5, all mimimum-time trajectories can be
generated. By storing the state vector at discrete
points in time along the minimum-time trajectories,
we are able to generate a set of points for which the
thruster firing times are known.

1t}

Figure 2: The set of reachable states for a 2-D sys-
tem.

for a 2-D System

In this section we examine the characteristics of the
following 2-D system:

z = h(z,u)

where z is a 2 x 1 state vector and u is the scalar
control. The desired final condition is assumed to be
the origin, ie., z(t;) = 0. If we subject the system
with final state z(t;) = 0 to all control histories and
integrate the system backwards in time starting at
ty, we obtain a set of states that are reachable from
the origin at time t—t;, or simply the set of reachable
states. We denote the set of reachavle states simply
as R(t — t;) in Figure 2. In the figure the boundary
of the set of reachable states at time t; ~t is denoted
by OR(t; — t;). it is well known from the geometric
properties of the optimal control that the boundary
of the set of reachable states defines all the minimum-
time solutions. We, therefore, conduct the following
experiment:

Let umin(z,8) be the optimal control which is ob-
tained by minimizing the Hamiltonian with respect
to the control, where s is the 2 x 1 costate vecto:.
Hence, if z° is an optimal motion, it satisfies

2" = h(2°, Umin(z",s"))

where s* is a solution to the related costate equa-
tions. Clearly, z*(t;) = 0.

In order to obtain a specific time-optimal trajec-
tory, we need to assume some final conditions on the
costate vector. We let s(ty) = s;, where s; is an
arbitrary constant vector. The system equations,
z = h(z,umia(z,8)), can now be integrated back-
wards in time starting from the final time t; to ob-
tain a trajectory z(sy, t—t;) shown in the figure. The
trajectory z(sy,t —ty) represents the fact that it is a
function of the specified final costate vector, sy, and
the time parametet, t —t,. This trajectory connects
all points along its path to the origin in minimum
time. Also, as mentioned earlier, this minimum-time
trajectory lies on the boundary of the set of reach-
able states. By storing z{sy,t —1t;) at discrete points




in time, we can obtain a set of points in the state
space for which the time-optimal control history is
known. If we assume a different initial sy, another
time-optimal trajectory is obtained. By varying s;
over R? and integrating the system for each s, back-
wards in time, all trajectories on the boundary of the
set of reachable states can be generated. In this way
all the reachable states can be obtained at discrete
intervals and the associated control history can be
stored as a function of these states.

In the next section we employ the techniques de-
scribed here to obtain a set of boundary condition
points for which the control history is known for
the case of minimum-time reorientation of a spinning
missile.

6. An Examination of the
“y” System

We use here the idea of backwards integration and
examine the system behaviour. Similar to the previ-
ous section, we conduct the following experiment.

Four of the final state variables are zero, as given in
Eq. (29). We assume that y5(7y).= ys.s, where ys s
is an arbitrary constant. Similarly, we assume an ar-
bitrary value for the final costate vector, q(Ty} = qy,
where g5y = 0. The expression for the time-optimal
control is given in Eq. (34). Once all the final condi-
tions on the state and costate variables are specified,
we start the integration at T and integrate the state
and costate equations backwards in time. At each
numerical integration step, we obtain a y(7’) where
T' = T — Ty. This trajectory connects all points
along its path to the specified final state in minimum
time. By varying the first four components of the fi-
nal costate vector q; over R* (the fifth component is
zero as given in Eq. (37)), the entire boundary of the
set of reachable states is generated starting from the
specified yy. We note here that the only non-zero
component of the state vector is ys s, which corre-
sponds to the roll angle of the missile. This angle
can take on values in the range [-r,7]. By varring
ys.s in this range, and following the aforementioned
procedure of generating the boundary of the set of
reachable states, all the time-optimal solutions can
be generated. During the integration, the state vec-
tor, y, and the corresponding thruster switch times
can be stored at discrete points in time. Hence, this
procedure gives a set of y points for which the con-
trol history given in terms of the thruster firing times
is known.

The control scheme can then be implemented in
real-time by using the thruster switch times which
are stored at discrete values of the transformed state
vector, y. However, in the actual missile the desired
attitude is measured with respect to the moving mis-

sile frame, whereas the vector y gives the orientation
of the missile with respect to an observer fixed in
the target. Hence, it is desirable to store the bound-
ary conditions in terms of the original state vector x.
The boundary conditions in terms of the x vector are
given in Eq. (14) and (15). The state vector y(T")
can be transformed back to our original system to
obtain the corresponding boundary conditions z g,
2.0, £3,d, and T4d.

The procedure to generate the control history as a
function of the boundary conditions can be summa-
rized in the following way:

1. Initialize y; and q;.

2. Integrate the y and q equations backwards in
time and at each T, = nAT obtain y(T},), where
AT is the time interval chosen to give desired
data-point spacing between y(T) and y(T}, ),
and n is a positive integer. Note that the nu-
merical integration step can be a submultiple of
AT.

3. Transform y(7T.) to get the boundary conditions
in the original form, z; 9, £3,0, Z3,4, and Z4g4.
Store the thruster switching times as functions
of these four variables. Note that if g; > 0, then
Ty = 0, and similarly if, ¢ < 0 then T} > 0,
where Ty is the first turn-on time of the thruster.

Each of these steps is discussed in the following sec-
tions.

6.1. Initialization of y; and qy

As indicated earlier, five of the variables at Ty are
zero.

Viy=Y2s=¥Y3s =VYasr=¢qsy =0

The other five variables at Ty are free. These must
be varied over all possible values to obtain the op-
timal control history as a function of the boundary
conditions. The variable ys s corresponds to the roll
angle and, thus, is confined to

ys.y € [=m, 7]

The space over which q1 s, ¢2, g3y, and g4 y must
be varied is a subset of the costate space. We refer
to this subspace as Q.

Definition: The space @ is defined as

Q ={q(Ty) : ¢s(Ty) = 0,qi(Ty) = %1,
G(Ty) € [-1,+1],i, =1,2,3,4,j # i}

An algorithm to vary these variables over the range
of their possible values is given below:




where § is the desired
spacing between values

of y5,]

do ysy = —nm, 1r,6

do i=1,4
giy ==l
do ¢jy = =1,+1, A where j # i and A is the
desired spacing between
values of ¢; ¢

During the implementation of our scheme to gen-
erate time-optimal solutions, we observe that a con-
stant A (uniform spacing in g¢; ;'s) does not result in
a uniform span of the entire desired space of time-
optimal solutions. We find that when g; ; is close to
zero, very small A is needed to span the set of de-
sired time-optimal solutions. Conversely, when g; ;
is not close to zero, A need not be small.

6.2. Integration of State and Costate
Equations

A practical issue in the implementation of the scheme
given in Section 6 is the choice of a numerical inte-
gration algorithm and the handling of discontinuities
that occur when the control switches from on to off
or vice versa.

The RK-4 fixed-step algorithm is used to integrate
the state and costate equations. We utilize the fact
that analytic solutions for y; and y, can be obtained
from Eq. (11). Thus, the equations for y; and g do
not have to be integrated numerically. The analyt-
ical solutions for y; and y; are also used to obtain
the half- and full-frame derivative estimates of the
remaining state and costate variables, as required in
the RK-4 integration algorithm.

There is a discontinuity in these derivatives when
the application of the control u starts or stops. This
switching time is a function of ¢, the first compo-
nent of the costate vector, as given by Eq. (34). If
this discontinuity occurs within an integration step,
it can cause large errors in the numerical solution.
To reduce these errors, the step size must be cho-
sen small enough to meet some integration error cri-
terion, which can result in excessive computational
time. Several papers have been written suggesting
special methods to circumvent this difficulty. We
choose the method proposed by Howe, Ye and Li°
for its accuracy and ease of implementation. In this
scheme, at each successive time step, ¢, is tested to
see whether it has switched sign. If it has not, the
integration proceeds to the next step. If switching
has occurred, the time of its occurrence is computed
by combining a fixed-point simplified Hermite inter-
polation with a continued fraction formula. Hermite
interpolation is also used to compute the state and
costate variable values at the crossover time. The
RK-4 algorithm is then used to integrate through

the remainder of the fixed-time step.
We define the following notation:

T; = ih, 1=0,1,2,...

ui =u(T;);, yiry(T), qi=qT)

where h is the integration step size and y; and q,
are the numerical approximations to the exact solu-
tion y(7;) and q(7;). The following computational
procedure is used at the ith step.

1. Integrate from T; to T;,; with the RK-4 al-
gorithm. In this integration u, is used for all
derivative evaluations over the interval.

2. Determine if ¢; ;41 has changed sign with re-
spect to ¢ ;. If not, repeat 1 starting at T;,;.
If ¢, has changed sign (q1,i+141.s < 0), it means
that ¢; has a zero over the interval T; < T <
T:4+1 and the discontinuity has been crossed. In
that case, proceed to step 3.

3. Using a fixed-point simplified Hermite interpola-
tion between T; and T;,; followed by the contin-
ued fraction zero-finder described by Howe, Ye
and Li®, determine the zero T, of ¢;. Again, us-
ing Hermite interpolation, determine y(T},) and
q(Ty).

4. Change the control u from 0 to umg4, (or from
Umar to 0, as appropriate) and integrate from
T, to T4, to recompute yi4y and qi41.

5. Return to step 1 and repeat the steps starting
at T

5.3, Transf ion Relati

Between x and y

Let us consider a vector r originating at the missile
c.g. We let {rn,} represent the components of the
vector r in the missile body axic frame; {r,} repre-
sent the components of the same vector in the frame
T; and {r;} represent the components of the same
vector in the frame F. The frame of reference 7 is an
arbitrary axis system whose z-axis coincides with the
desired direction of the missile z3-axis. The frame of
reference F is defined to be the missile axis sytem
at the end of the maneuver. Previously, we have de-
fined 34 and z44 to be the yaw and pitch angles
describing the orientation of the desired direction of
the missile zy-axis with respect to the missile body
axis system. In addition, we define r5 4 to be the
roll angle of the frame F with respect to the missile
body axis system. It should be borne in mind that
z5 4 18 free in the formulation of the optimal control
problem in Section 3. Thus, we can write.

{rs} =[C(z3.4, 244, 25.4)] {rm} (38)




where [C] is the direction cosine matrix and is de-
fined in the following way:

[C (¢,9, é)] =
cos Y cosé sin ¢ cos @ —~siné
— sin ¢ cos ¢+ co8s Y cos P+ cos dsin ¢
cosysindsing sinysinfsing (39)
sin ¢ sin ¢+ —cosysing+ cosfcos¢d
cosysinfcos¢d sinysiné cos o

We have already defined y3 = ys(T — Ty), ya =
vo(T — Ty), and ys = ys(T — Ty) to be the Euler
angles describing the missile orientation relative to
an observer fixed in the frame 7. Therefore, we can
write

{rm} = [C (v3,y4, ys)] {r} (40)

Finally, the frame F is obtained by rotating the
frame 7T about its z-axis. This rotation is given by
the angle ys ; = ys(Ty) and we get

{rs} =[®]{re} (41)
where
1 0 -0
(®]=| 0 «cosysy sinysy (42)
0 -—sinysy cosys;

The matrices [C] and [®] are both direction cosine
matrices; therefore, each - an orthogonal matrix.
Hence, the inverse of thes. - .atrices is obtained by
merely transposing them.

Egs. (40) and (41) can be combined to write

{rs} =[®}[C(ys, 4, ys)]T {rm} (43)
Comparing Eqs. (43) and (38), we finally get
[C (33,4’24,dvz5,d)] = [Q] [C (y3vy4ly5)]T (44)

We let the entries in [C(z3 4, 4.4, 75,4)] be denoted
by ¢;; and the entries in [®][C(ys,y4,y5)]7 by mj,
where { and j are the row and column indices re-
spectively. Equating ;3 = 7,3, we obtain

—sinZ4q4 = Sinyzsinys + cosyzsinygcosys (45)

Since —7/2 < x4 4 < 7/2, the above equation gives
a unique value for z4 4.

244 = —sin~"' (sin y3sinys + cos y3 sin ys cos ys)
(46)
To get an expression for rj 4, we equate {;; = 7,
and ;2 = 712 and obtain

CO823,4C08 244 = COS Y3 COS Yy (47)
SiN X3 4CO8 T4 4 = — Sill Y3 COS Y5 + COS Y3 Sin Y4 SN Ys
(48)

-
(=T &)
LX_

Zi0 n
T2.0 Y2
-1 - 83INn CO8 CO8 3in 1N
T34 tan ( coays Co8 ys )
. _1 - . .
Tad | —sn (sm Yasin yYs + COS Y3 SIN Y4 COS ys )

Table 1: Transformation relations between x and y.

Dividing Eq. (48) by Eq. (47), we get the follow-
ing expression for z3 4 without an ambiguity in the
quadrant:

_1 { —sinya cosys + coS Y3 sin y4 sin
z3,4=tan1( Y3 Ys Y3 Y4 ys)

€08 Y3 CO8 Y4

(49)
Similarly, by equating {23 = 723 and (33 = 13, we
obtain

€08 Z4,48iN Tg 4 = cO8 ys y (— o8 Y3 sin ys+

sinyasiny, cosys) +sinys s cosygscosys  (50)
COST44CO8Ts5 4 = —sinys s (— cosyssinys+
sin y3 sin y4 cos ys) + cos ys s cos ygcos ys (51)

Dividing Eq. (50) by Eq. (51), we get the follow-
ing expression for z5 4 without an ambiguity in the
quadrant:

(a+b)cosys s + csinys s ) (52)

Z5 4 =tan~! -
5.d ((—a+b)smy5,; +ccosys s

where
a = cos Y3 sin ys

b = sin y3sin y4 cos ys
C = COSY4CO8Ys

Table 1 summarizes the transformation relations be-
tween the boundary conditions, given in terms of the

state vector x, and the new state vector y at time
T-Ty.

7. Example Trajectories

Three sets of final conditions on the state and costate
variables are given in Table 2. We only vary the final
roll angle ys ¢ in these three examples. Starting with
these final values, the state and costate equations are
integrated backwards in time. Figure 3 shows the
plot of y3 vs. ys4, where y3 and y4 are the yaw and
pitch angles of the missile with respect to a frame
whose z-axis coincides with the desired direction of
the missile z,-axis. At each integration step the state
vector y is transformed to obtain the boundary con-
ditions z3 4 and z4 4. The total angle a between the
initial and the desired direction of the missile is given




Example 1 Example 2 Example 3
q17 0.25 0.25 0.25
q2.¢ -0.50 —-0.50 —0.50
¢3¢ 0.75 0.75 0.75
da.s 1.00 1.00 1.00
Ys. ¢ 0.00 27/3 4r/3

Table 2: Final conditions to generate example con-
trol histories.
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Figure 3: Path of the missile z)-axis in the y3-y4
plane, where y3 and y, are the yaw and pitch angles,
respectively, of the z;-axis with respect to the desired
pointing direction.
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Figure 4: Total angle a vs. —(T - Ty).
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Figure 5: Path of the target in the z3 4-z4 4 plane,
where z34 and z44 are the yaw and pitch angles,
respectively, of the target direction with respect to
the moving missile body-axis frame.
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Figure 6: Total transverse angular velocity 0 vs.
-(T-Ty).

by a = cos~!(cosz34coszy4). Figure 4 shows the
angle a as a function of the dimensionless time T.
The angles z3 4 and z4 4, which represent the target
yaw and pitch angles, respectively, relative to the
moving missile frame, are plotted in Figure 5.

The total transverse angular velocity Q2 =
vV yli + y.‘,5 is plotted as a function of the dimension-
less time T in Figure 6. We start at 2 = 0 and,
integrating backwards, obtain the time history of y;
and y2. Figure 7 shows the trajectory of transverse
angular velocity components y;-y; as the integration
proceeds.

8. Mechanization of the
Control Scheme

The thruster switch times 7;,i = 1,2,...,n can be
obtained from the approach giver in Section 6 for
the desired set of boundary conditions, where T; is
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Figure 7: Trajectories of transverse angular velocity
components y; and y;.

the time when control switches and n is the total
number of switches required to complete the attitude
change maneuver. In order to implement this scheme
in real-time, the switch times T;,: = 1,2,...,n must
be stored in an on-board computer. We propose a
control scheme which only needs to store T} and T3,
the first turn-on and turn-off times, respectively.

In this scheme table look-up followed by interpo-
lation is used to compute T; and T;. The thruster
is then turned on from T, to T,. After this first
thruster firing has been completed, we can measure
the state variables at T3. The switch times T} and
T3 can now be recomputed based on this measured
state. These new T, and T, correspond to T3 and
T4, respectively, for the previous 7y and T,. Thus
for the two-pulse case, the new T3 and Ty(= Ty) are
such that T4y — T3 = 0. In the presence of interpola-
tion, numerical, or measurement errors this will not
be quite true. Nevertheless, in reality this scheme
would probably be superior because it can correct
for system and measurement errors by introducing
feedback based on the latest state information.

When we store the thruster firing times at spec-
ified time intervals while integrating the state and
costate equations backwards in time, a randomly
spaced function is obtained. However, it is desirable
for real-time function generation to have an equally
spaced function. This table of equally spaced func-
tion values can be obtained by using linear inter-
polation across the randomly spaced function val-
ues. Once the equally spaced function to be used in
real-time function generation is created, table search
and interpolation can be carried out easily. Our re-
cent research has focused on creating this table and
implementing the control law using function genera-
tion. The results of this approach appear in a Ph.D.
dissertation!? and will also be published in future
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research papers.
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